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The Nash equilibrium definition of rationality is too weakpictk out moves that fail to satisfy its re-
quirements when these moves occur off the path of play. Bhi®i a problem in strategic-form games,
where the dynamic element is lost and as a result playersotaondition their behavior on their knowl-
edge about what has happened in the game by the time they dvaet. tIn extensive-form games that
preserve the idea of sequences of actions, this weaknesassbf@duilibrium is a serious problem because
it sometimes rationalizes behaviors along the path of plagipectations that involve non-rational be-
havior off the path of play. Since the contingencies wheahdiehaviors occur do not arise with positive
probability if the equilibrium strategies are followedetNash requirement of best-responding while hold-
ing the other players’ strategies fixed cannot eliminaté stiategies (in a sense, Nash equilibrium cannot
evaluate the optimality of a player’s behavior in contingien it cannot “see” under the strategies of the
other players). We resolved this by strengthening the diefimof rationality to require that strategies
remain best-responses in these contingencies as wellgswdsgerfection).

Since static games of incomplete information also ignoee ribtion of sequencing, Baeysian Nash
equilibrium (which is really just Nash equilibrium in the kanyi-transformed game that represents the
incomplete information) will similarly fail to identify te analogous suboptimal behavior if the dynamic
element is introduced. This means that we need to providartakdgue to subgame perfection for games
of incomplete information: a definition of rationality thigtkes into account what players know when it
is their turn to move. The problem now is that after the Haystmansformation that converts the game
into one of imperfect information, we are usually left witbry few, if any, proper subgames to analyze
because of the non-singleton information sets after Ngttneove”. In this setting, subgame perfection
will usually have no bite because it does not allow us to $pidrmation sets. The strengthening of our
definition of rationality will do just that: enable us to evate the expected payoffs of various actions at a
given information set using the knowledge that (a) thisiimfation set has been reached, and (b) players
must form some beliefs about which node at that informatieinceuld have been reached. As before,
this definition will continue to be Nash equilibrium — we ausj eliminating Nash equilibria that involve
unreasonable behavior from the set of admissible solutions

As a motivating example of how subgame perfection might e bs, consider the complete-information
game in Fig. 1 (p. 2). Player 1 gets to choose betwéeM , or D. If he choosed, the game ends. If he
chooses eithet/ or M, player 2 gets to choose betwekrand R without knowing what action player 1
has taken except that it was nbt

L R
U|2100
M 02|01
D 13|13

2,1 0,0 0,2 0,1
Figure 1: The SPE Example Game.

What are the Nash equilibria? By inspection of the stratégim, we see that there are two Nash
equilibria in pure strategiesl{/, L) and({D, R). However, there is something unsatisfying about the second
one. Inthe( D, R) equilibrium, player 2 seems to behave irrationally. If mdormation set is ever reached,
playing L strictly dominatesk. So player 1 should not be induced to chodsédy player 2's incredible
threat to choosé.. However since player 2’s information set is off the equilim path, Nash equilibrium
does not evaluate the optimality of play there. Moreoveithee does SPE: player 2’s information set
is not a singleton. The game has only one subgame—the etine gsel—and as a result, all Nash



equilibria, including(D, R), are subgame perfect. We need an approach that evaluategtiimality of
player 2’s response at her information set.

1 The Building Blocks

The approach we are going to take involves two requiremdats taken jointly, will allow us to evaluate
the optimality of behavior at any information set, incluglithose that are not singletons. The first step is
to observe that in a dynamic setting, each player must have $eliefs about what has transpired in the
game at the time that it is their turn to choose an action. Ve# skaluate the consequences of various
actions in terms of these beliefs. The second step is to hatestich beliefs cannot be arbitrary—they
must be consistent with what the player thinks the strasegfethe other players are. In other words,
all players must be best-responding to the beliefs aboubtier players’ strategies. In a sense, this is
exactly what Nash equilibrium does because we can intetipeettrategy profiles as sets of expectations
(beliefs) about behaviors: all players are then best-redipg to what they believe the other players are
going to do, and these beliefs are predicated on the assamtptt the other players are best-responding
to their beliefs. In subgame perfection, we required playterask themselves what they would do in
every possible contingency. For contingencies that coatcra reached in some strategy profile, players
performed a thought experiment by pretending that the kgaticy has arisen. In effect, they conditioned
their behavior on the knowledge of what had happened in theegso far. Conceptually, then, we are
not introducing anything new to our definition of rationglitWe merely need the notational apparatus
that allows us to extend the implications of our concept dbrelity to situations where the existing
approaches leave us without a way to apply it.

1.1 Sequential Rationality

Consider any dynamic game and an arbitrary informationaepliyeri, 4,. When it is playeti’s turn
to move, heknowsthat the game has reachkd(as a fact). If this information set is a singleton, then he
also knows precisely what all preceding actions for all pfaymust have been. That is, he dtsowsthe
history of the game leading te,. It is this knowledge that the definition of subgame pertattperates
on because it allows one to start a new game from that infeomaet and apply the Nash equilibrium
requirements to it. If the information set is not a singletbawever, then this technique does not work.
Instead ofknowingthe history of the game that has leditg playeri can only have some idea about how
his information set was reached; that is, he will have sbelif about the past actions of all players. For
now, we are not going to examine where these beliefs come fr@mare just asserting that they must exist.
Thus, by analogue with subgame perfection, we are going agiime that the contingency has arisen, but
unlike subgame perfection, we are not going to require tlageps know precisely how this has happened.
Going back to the game in Fig. 1 (p. 2), player 2 may not knowthéreplayer 1 has playet or M
by the time her information set is reached, but she will hawaes belief about which of these two he
could have played. That is, the fact that her informationhsest been reached forces player 2 to consider
it a fact that player 1 must have played eitliéror M because these are the only two actions that could
have possibly led to this contingency arising. As usual, egesent beliefs about events with probability
distributions. In this case, lgt € [0, 1] be the probability that player 1 chog€é, and1 — i be the
probability that he chos®f . Think of this as the probability distribution over the nede her information
set: each node is the result of a different history of play] aa beliefs about these histories can be
represented simply by probabilities over the nodes. Siack eode represents a unique way of reaching
the information set, the nodes are mutually exclusive. &the information set can only be reached by
one of these histories, the nodes are also exhaustive. Ththéd the nodes are exhaustive and mutually



exclusive means that the probabilities associated witmtirust sum up to 1; that is, they must form a
probability distribution.

To define these beliefs generally, recall from our formalmdtfin of extensive-form games thaf
denotes the set of node¥, denotes the set of histories (information sets), afxd € # is the information
set that contains nodec X.

DEFINITION 1. A system of beliefds a mappingu : X — [0, 1], such that for alh € #, the following
holds: )" .j u(x) = 1.

Intuitively, a system of beliefg. specifies the relative probabilities of being at each nodeaiffity in-
formation set. Obviously, if the information set is a sirigle i#(x) = {x}, thenu(x) = 1 (beliefs are
degenerate). Think of beliefs as probability distribusaver the nodes in an information set; there must
be as many of these distributions as there are informatitsn se

These systems of beliefs allow us to define the analogue tbgasuwe, which we shall call @ontinu-
ation game every information set begins a new continuation game, whicludes the remaining game
tree that emanates from that information set, and nothigggy dlhat is, this is basically a subgame without
the requirement that it starts with a singleton informaset

Just as we required strategies to be best responses in arselbga are now going to require that they
are best responses in a continuation game. Each actionaraigformation set is going to have different
consequences depending on which node in the informatioinagtiay has actually reached. The system
of beliefs then allows us to compute the expected payoff oheation as a function of the probability
distribution over the nodes. For instance, if player 2 cleeds she must expect that the outcome will be
(U, L) with probability i« (her belief that player 1 has chosér), and that the outcome will beM, L)
with probability 1 — i (her belief that player 1 has chos&f). Correspondingly, her expected payoff from
choosingL is:

Us(L) = pua(U, L) + (1 = pua(M, L) = u(D) + (1 = )(2) = 2 — e

Analogously, since choosing leads to the outcom@/, R) with probability i and the outcoméM, R)
with probability 1 — v under her beliefs, her expected payoff from choosihig:

U2(R) = puz(U, R) + (1 — ua(M, R) = j(0) + (1 —p)(1) = 1 — p.

The best-response is, as usual, the action that yields ghes$tiexpected payoff. In this case, we note that
2—u>1—puforall u € [0, 1]. This means that player 2’s best response at her informagbmust bd.
irrespective of her beliefs about player 1 choosingr M. Since our definition of rationality requires best
responses, merely having beliefs in this game is sufficemdiminate any solution that involves player
2 choosingR at her information set. This is so because the strafegy strictly dominated: player 2 is
better off choosing. for any action that player 1 might take that reaches herin&tion set. Most games,
of course, are not going to have such convenient strictlyidated strategies, and merely having beliefs
will not be sufficient to determine behavior in the contirioatgame.

The notion of beliefs allows us to define best responses fpcantinuation game as the strategies that
yield the highest expected payoff under the system of lellebrmally, letU; (0,- (h),o—i(h)|h, M) denote
playeri’s expected payoff starting at information getwith beliefs i (x) about being at any node € #,
if he follows strategy; (7) while the other players follow_; (%), whereo (k) denotes the restriction of
the strategies to the continuation game startinig &/e then define best responses as follows:

DEFINITION 2. A strategyo; is sequentially rational at information set given a system of beliefg if

Ui (0i(h), o—i(h)|h, 1) = Ui (6i(h),0—;i (h)|h, )

for all 5; (h) € T (h).



That is, a strategy is sequentially rational for a player givan information set if, given his beliefs, it
yields the highest expected utility in the continuation gastarting at that information set while holding
the other players’ strategies fixed. This is easier to umaledsif you think about behavior strategies in
extensive form games. Recall that behavior strategiesfgg@obability distributions over the nodes in
an information set, just like systems of beliefs do. Thewakion of the expected payoff in a continuation
game is exactly the same as the computation of expectedfpdyah a behavior strategy.

Sequential rationality at an information set implies thailayer would not want to deviate from the
strategy at that information set. This means that if a sisate, is sequentially rational at all information
sets where player has to move given his beliefs and the strategies_; for the other players, then it
is playeri’s best responséo o_; under . In our example, player 2 has a unique sequentially rational
strategy,L.

Having specified a player’s best responses as a functionsdbddiefs, we must now ask where these
beliefs come from.

1.2 Consistent Beliefs

Let us pause for a second to think what it is that we are aftes: hee definition of rational behavior as a
best response to what a player thinks the other players a@mg.d8ince this definition is going to apply
to all players, each of them must expect the others to berbsptnding as well. In the present context,
this means that players must all expect everyone to be algpssiguentially rational strategies given their
beliefs. This means that each player’s beliefs about theryisf play must be restricted to everyone using
sequentially rational strategies. In other words, alldislimust be somehow derived from the optimal
strategies.

Consider the game in Fig. 1 (p. 2) and some stratggpr player 1 such that{(U) > 0 oro (M) > 0.
If player 2 thinks that player 1 is usingy and her information set is reached, what belief must she hold
about which node she is at? That is, what is the likelihootigleyer 1 chose, sal/, conditional on him
having chosen eithgly or M and knowing that the probabilities with which he choosesrtlaees (U)
ando; (M), respectively? Since this involves conditional probébti it is perhaps not surprising that we
are going to use Bayes rule to compute them:

Priv) 01(U)

p =PI O M) = 500 = o1 (0) £ o100)

You can see now why we wanted one of these two probabilitieplayer 1 to be non-zero: Bayes rule is
undefined for zero-probability events (you cannot conditia stuff that cannot happen). Intuitively, since
there are only two histories consistent with player 2'sinfation set, the total probability of reaching that
set is the probability that one of them is chosen. Since hés@re exhaustive and mutually exclusive, this
probability is the sum of the probabilities associated hi different historieso (U) + o1(M). Since
we are interested in the likelihood that one particulardmstas occurredl/ in this case, we divide the
unconditional probability of that history occurring; (U ), by the total probability.

The notion that beliefs are consistent with the strategiesnithey are derived from them by Bayes rule
whenever possible is defined formally as follows:

DEFINITION 3. A system of beliefg is consistentwith the strategies if, for any information set such
that PXi|o) > 0 and for anyx € &,

_ Pr(x|o)

"~ Pr(hlo)’

p(x)



To see that this is indeed Bayes rule that conditions on titeHat the information set is reached, write
the full formula:
Pr(h|x, o) Pr(x|o)
Pr(hlo) '
and observe Rh|x,0) = 1 because knowing that somee & has been reached means thdtas been
reached.
With these two concepts in mind, we can now revise our dedimitif rationality.

Pr(x|h,0) =

1.3 Weak Perfect Bayesian Equilibrium

The idea is simple: strategies must be sequentially rdtmiman beliefs (best responses) and beliefs must
be consistent with the strategies (derived by Bayes ruleneter the strategies allow it). We shall call
a strategy profiler and a system of beliefs anassessmento, 11), and use this to define the solution
concept formally as follows,

DEFINITION 4. An assessmelit, ) is aWeak Perfect Bayesian Equilibrium (WPBE)if ¢ is sequen-
tially rational givenu, andu is consistent withy .

It is important to realize that this definition places abgalipino restrictions on beliefs at information
sets that do not occur if the strategy problas followed; i.e., on information setsff the path of play
We only require that they amomeprobability distributions but there is no consistency niegon onwhat
those distributions must be. This allows the analyst tayasaibitrary probability distributions (beliefs) at
such information sets. The definition still requires that strategies are sequentially rational everywhere,
which includes these off-the-path sets with arbitrarydfsli

As it turns out, for some games this definition is sufficientute out implausible NE and SPE. Going
back to our example from Fig. 1 (p. 2), note that any WPBE meguthat player 2 choosds at her
information set no matter what beliefs she might have. Rlaiebest response to this is to chodse
which leaves us with the assessmé(it, L) , u = 1) as the unique WPBE.

We can infer from this result that not all Nash equilibria @ BE, and that not all SPE are WPBE. We
shall see soon that not all WPBE are SPE either. For now, weted® an immediate result that follows
directly from the definition of WPBE:

ProrPoOsSITION1. Every WPBE is a Nash equilibrium, but not every Nash equuiroris a WPBE. 0

Proof. Consider an assessmént 1) that is WPBE. Since the strategies are sequentially rdtadrell
information sets, they must be sequentially rational atrdédirmation sets that are reached with positive
probability undew (andu is derived by Bayes rule at all such sets). This means thatitecbest responses
to each other, and sois a Nash equilibrium.

The second part of the claim—that there are Nash equiliba& are not WPBE—is established with
the example above. In particular, Nash equilibrium allowikty dominated strategies to be played at
information sets that do not occur underbut WPBE will not allow it. -

To see how one would solve for WPBE in slightly more involvédations, consider a modification of
our example: the game shown in Fig. 2 (p. 7). One key diffexdadhat now player 2 no longer has a
strictly dominant strategy at her information set: her lwesponse depends on what player 1 does. The
other differences involve player 1's payoffs.



2,1 1,0 3,1 0,2
Figure 2: The WPBE Example Game.

Let o; denote a strategy for playémand start with player 2, whose expected payoffs are:

Uz2(L) = () + (1 —p)(1) =1
U2(R) = pn(0) + (1 — ) (2) =2 —2p,

which implies that her sequentially rational strategylisvheneverl > 2 —2u < u > 15, andR
otherwise. We can write her best response as:

o(L)=1  ifu>1jh
BRz(/L) = O’2(L) =0 if M < 1/2
o2(L) € [0,1] if = 1p.

Turning now to player 1, observe thét strictly dominatesD. This means that no matter what player 1
believes at the outset of the game, choosihgs never sequentially rational. Thereforg,(D) = 0in
any WPBE, which in turn means that(U) 4+ o1(M) = 1 in any WPBE. This tells us that player 2’s
information set must occur on the path of play in any WPBE, sm8ayes rule will pin down her beliefs
there. Since her best response involves a critical valye &t us examine all possibilities:

e Suppose thatt > 1/, in which case player 2 must chooke Player 1's best response is to choose
M. But this implies thatu = 0 because this is the only belief consistent with his strategy
contradiction. Therefore, there is no such WPBE.

e Suppose thatt < 1/, in which case player 2 must chooRe Player 1's best response is to choose
U. But this implies thajx = 1 because this is the only belief consistent with his stratagyntra-
diction. Therefore, there is no such WPBE.

e Suppose thatt = 1/, in which case player 2 is indifferent, and so any responsedgsientially
rational. For this belief to be consistent with player limttgy, it must be the case that
= o1(U)
o1(U) +o1(M)

1
=o01(U) = 5,

where we used the fact thai(U) + o1(M) = 1 in any WPBE. Thus, we conclude that player 1
must be mixing in this equilibrium witley (U) = 01(M) = /. He would only do so if bott/
andM are sequentially rational; i.e., if he is indifferent amahgm. Since

Ur(U) = 02(L)(2) + (1 —o2(L))(1) = 1 + 02(L)
Ur(M) = 02(L)(3) + (1 —02(L))(0) = 302(L),

this can only happen when (L) = 1/. This yields the WPBE.

7



We conclude that this game has a unique WPBE] (U) = o5 (M) = 14,05(L) = 1)1 = 1/).
Generally, when all information sets occur with positivelmbility under the equilibrium strategy pro-
file, as it is the case here, we will omit the system of belieEwkvriting the solutions because these are
uniquely defined by Bayes rule. For instance, in this exam@avould say that the game has a unique
WPBE, in which player 1 chooses betwelgnand M with equal probabilities, and player 2 chooses be-
tween L and R with equal probabilities. Since all information sets ocaaders ™, all Nash equilibria
must also be SPE and WPBE. A quick check of the strategic fexmals that this is indeed the case: the
unique MSNE specifies the strategies we just found.

Let us now make the game a bit more interesting so tha& no longer strictly dominated, as shown in
Fig. 3 (p. 8). We can now no longer assert that player 1 canlagt® in WPBE, and as a result cannot
assume that will be defined by Bayes rule.

L R
Uu|21)-10
M| 31|02
D] 13|13

2,1 —-1,0 3,1 0,2
Figure 3: The Interesting WPBE Example Game.

Since player 2's payoffs are the same as in Fig. 2 (p. 7), lwresdially rational strategies remain the
same. We shall examine the possible assessments by lodkimg\arious beliefs she might hold:

e Suppose thakt > 1/, in which case player 2 must chooke Player 1's best response is to choose
M , which puts player 2's information set on the path of playe Dinly consistent beliefig = 0, a
contradiction. There is no WPBE with beligiis> 1/.

e Suppose thatt < 1/, in which case player 2 must chooRe Player 1's best response is to choose
D, which leaves player 2’s information set off the path of pBgyes rule is undefined, and WPBE
places no restrictions on her beliefs. In particular, weldquick any probability distribution that
could rationalize her response. Thus, there is a contindlWMRBE where the assessments take the
form ((D, R) , u < 1/2).

e Suppose thgkt = 14, in which case player 2 can mix. Player 1's expected payo#fs a

Ur(U) = 02(L)(2) + (1 —02(L))(=1) = 302(L) — 1
Ur(M) = 02(L)(3) + (1 = 02(L))(0) = 302(L).

and soM strictly dominatesU; i.e., U is never sequentially rational. Thus;(U) = 0 in any
WPBE, which implies that it; (M) > 0 in WPBE, Bayes rule will pin down the only consistent
belief to bey = 0, and player 2 would not be indifferent. We conclude #hatM ) = 0 must obtain
as well in any such WPBE, which in turn means that player Zsrimation set must be off the path
of play, and we can assign whatever assessment we needotwatite her strategy. Since player 1
must be willing to choos® over M, it must be thal/; (D) > U;(M) < o2(L) < 1/3. Thus, there
is a continuum of WPBE where the assessments take the(f@nu, (L) < 1/3),u = 1/).

This game has infinitely many WPBE characterized by diffecdfithe-path beliefs we assign for player
2 (and, in the second set of solutions, by her different ngbprobabilities). All these WPBE are payoff
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equivalent (the players obtain, 3)), and observationally equivalent as well (the game ends pltyer 1
choosingD). In that sense, the multiplicity of WPBE is not particujatloubling. On the other hand, since
U is strictly dominated by for player 1, it seems quite odd that any beliefs other thaa 0 should be
admissible. If we were to eliminate these, the sole surgidesessment would €D, R) , u = 0). We
shall soon see this stronger consistency requirementimnact

How do these WBNE relate to Nash equilibria (and SPE, sincdlah equilibria in this game are
subgame-perfect)? The strategic form in Fig. 3 (p. 8) shtvasM strictly dominated/, soo;(U) = 0
in any NE. Moreover, ib; (M) > 0, thenR strictly dominated. for player 2. But if player 2 choose®,
then player 1 would choose. Thereforeg; (M) = 0 in any NE as well. We conclude that player 1 must
play D, which makes player 2 indifferent. She can mix with any pholitg as long asU;(D) = 1 >
Ui (M) = 302(L), oraa(L) < 1/5. Thus, there is a continuum of MSNED, a5 (L) < 1/3). All of them
are subgame-perfect. All WPBE that we found are in this stI8NE as well.

We saw earlier that not all SPE are WPBE (indeed, this is howlimginated the unreasonable solution
in the game from Fig. 1 (p. 2)). We now show that not all WPBESIPE either; that is, there exist WPBE
that are not subgame-perfect. We shall do this by way of thengke game in Fig. 4 (p. 9).

1212 333 012 011
Figure 4: The WPBEZ SPE Game.

The subgame that starts with player 2's move has a unique Bigsiibrium, in which she chooses
U and player 3 chooseR. With that expectations, player 1 has a unique best respionskooseB.
Therefore, this game has a unique SPE.:U, R).

Consider now sequentially rational strategies for playeéfi8 expected payoffs are:

Us(L) =pM) + (1 -w)2)=2—n
Us(R) = p(3) + (1 —w)(1) = 14 24,
which means that his best response is:
o3(L) =1 if u<1/3

BRs(u) = {03(L) =0 if u>1/3
o3(L) €[0,1] if u = 14.

Since player 2’'s payoffs are:

Ua(U) = 03(L)(2) + (1 —03(L))(3) =3 —03(L)
Uz(D) = o3(L)(1) + (1 —o3(L))(1) = 1,



choosingU strictly dominates choosing. Her best response in any WPBE mustlbesoo, (U) = 1.
This makes it easy to compute player 1's expected payoff thaosingB as:

Ui(B) = o3(L)(1) + (1 —03(L))(3) = 3 —203(L),
so his best response is:

o1(T) =1 if o3(L) > 1/
BRi(02(U) = 1,03) = yo1(T) =0 if o3(L) < 112
01(T) €[0,1] if o3(L) = /2.

Suppose that; (B) > 0, which puts player 2’s information set on the path of playthis caseg,(U) = 1
pins downy = 1, so player 3 must choosg, to which player 1's best response Bs Therefore, the
assessmer B, U, R),n = 1) is WPBE. Not surprisingly, when all information sets are ba path of
play, there is no difference between SPE and WPBE (and Nash).

Suppose now that(B) = 0, which leaves player 2's information set off the path of plalis, in turn,
puts player 3's information set off the path of play as wealkl@o Bayes rule is undefinédiVe are free to
assign whatever beliefs we want to rationalize player 3&agy. Since player 2 has a unique sequentially
rational strategy i/, and we wish to ensure that player 1 chooBegetting player 3 to choosk will be
sufficient. We can get this by assigning some: 1/5. Therefore, any assessmélit, U, L) , u < 1/3) is
WPBE. None of these are subgame perfect.

Why did this happen? Subgame perfection places strongatésts on strategies in all subgames. In
this instance, it requires player 3 to best-respond in thgaune that starts with player 2's move. In effect,
this forces player 3 to behave as if player 2's informationtees been reached. Since player 2 has a
strictly dominant strategy to choogg, this restricts player 3 to choosing. WPBE, on the other hand,
does not place any restrictions on information sets off &ta pf play. It only requires that players choose
strategies that are sequentially rational gigemebeliefs. In this instance, this means that player 3 does
not have to take into account the fact thats strictly dominant for player 2, which allows him to maiinta
the (strange) belief that she play@&dprobability that exceedd/z. In fact, there is a WPBE in which he
believes that she play® with certainty! This is clearly undesirable: since playdrad a strictly dominant
strategy, any reasonable belief for player 2 should requite 1, which would make the WPBE subgame
perfect. But no such restriction exists in the current dedini

Before moving on, note that our examples have collectivetgldished the following result:

PropPosITION2. Not every WPBE is a SPE, and not every SPE is a WPBE in gamegeffatt infor-
mation. 0

As the examples suggest, the discrepancies arise whemiafion sets that are not singletons are left
off the path of play. This suggests that games of perfectimédion might not have this problem, as indeed
turns out to be the case.

ProrPoOSITION3. Every WPBE is a SPE in games of perfect information. 0

1The formula is:
o1(B)o2(U)
01(B)o2(U) + 01(B)o2(D)’
and it is clearly undefined whery (B) = 0. Make sure you understand that you cannot just divide ba&mthmerator and the
denominator by (B) to cancel that term.
2There is also a continuum of assessments where player 3,mik&sh are also not subgame perfect but WPBE. | leave these
to you as an exercise.

l,[,:
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Proof. WPBE requires that strategies are sequentially rationahgiomebelief at each information set.
Since each information set is a singleton in games of penfiéatmation, the game admits only a single
belief system. But then sequential rationality guaranteasthe strategies are Nash in all subgames; i.e.,
that they are subgame perfect. n

The intuition for this result is that if all information se#se singletons, then there is only one belief
that we must assign for each of them irrespective of whetiey bccur on or off the path of play: the
probability of being at the single node in an information isetst be 1. Sequential rationality then boils
down to our standard Nash best response for the subgamedatiduation game) that starts at that node,
which in turn ensures that the sequentially rational sfieteare subgame perfect.

The possibility that WPBE is not subgame perfect is troublitt is especially so when you recognize
why this is the case: by assigning arbitrary beliefs fortb#-path information sets, we are permitting
players to threaten each other with implausible beliefdgs frteans that we must make the solution concept
more demanding.

2 Perfect Bayesian Equilibrium

If our only goal were to ensure that all WPBE are subgame pettfeen there is a straightforward strength-
ening of the equilibrium definition that would satisfy thigquire that the strategies are WPBE in all sub-
games. This will force recalculation of beliefs from therstd each subgame irrespective of whether it is
reached by the strategies, and avoid problems of the sorawénsFig. 4 (p. 9).

DEFINITION 5. An assessmerit, i) is aPerfect Bayesian Equilibrium (PBE)if it is a WPBE in all
subgames.

Since this requirement ensures that PBE are subgame parfddiecause the original example from
Fig. 1 (p. 2) shows that there are SPE that are not PBE, ttenfinit) is immediate:

PropPoOsITION4. Every PBE is a SPE but not every SPE is a PBE. o

In practice, applied work with games of incomplete inforimatalmost always uses PBH et us look
at several example games.

2.1 Myerson’'s Card Game

Recall the card that we have now seen a couple of times, repeddhere in Fig. 5 (p. 12). Previously, we
solved this by converting it to strategic form and finding Mesh equilibrium. Let us now find the PBE.
We start with player 2's sequentially rational strategyr Ebgpected payoffs are:

Uy(m) = u(2) + (1 —pu)(=2) =4 —2
Uzx(p) = p(=1) + (A —pw)(=1) = —1,

so her best response is
oa(m) =1 if > 1/a
BR(u) = q02(m) =0 if w< /s
oa(m) € [0,1] if u = 14

3The definition of PBE in Fudenberg and Tirole is actually anbire demanding than the one | have given here, but this one
is sufficient for this course.
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-2,2 1,-1 2,-2 1,-1

Figure 5: Myerson’s Card Game.

Player 2's belief is defined as

_ (he® ok
(R (R) + (2)o1(r) — o1(R) + 01(7)

whenevero; (R) > 0 oro1(r) > 0. It is undefined, of course, if both are zero. Since playempaigoffs
are:

i

Ul(F) = -1 Ui(R) = 1 —302(m)
Ui(f) =1 Ur(r) = 1+ 02(m),

his sequentially rational strategies are:

o01(R) =1 if o2(m) < 2/3
BR; (oz|black) = Jo1(R) =0 if oa(m) > 2/3
01(R) € [0,1] if op(m) = 2/3,

and
=1 if
BR (0alred) = o1(r) | 02(m) >0
o1(r) € [0,1] if op(m) =0.
We now look for PBE using the critical value of player 2’s mogir beliefs:

e Suppose thatt > 1/4, soo,(m) = 1. Player 1's best responses arg R) = 0 ando;(r) = 1,
which imply thatu = 0, a contradiction. There is no such PBE.

e Suppose thatt < 1/4, soo,(m) = 0. Player 1's best response if his card is blacki$R) = 1.
There are two possibilities if his card is red:

— Suppose thap € (0, 1/4), so his best response é5(r) = 1 as well. Thenu = 14, a
contradiction. There is no such PBE.

— Suppose that = 0, in which casex = 1/(1 4+ o1(r)) > 0, a contradiction. There is no such
PBE.

e Suppose thatt = /4, so player 2 is indifferent and can mix. There are two pokds:

12



— Suppose that, (m) > 0, so that player 1's best response when the card is reg(i9 = 1.
Bayes rule then requires that

_ a® 1 _ 1
“am+l s - W=7

which implies that player 1 must be willing to mix when thedt& black. He would only do
so wheno, (m) = 2/3. The assessmef(o1(R) = 1/3,01(r) = 1),02(m) = 2/3), 0 = 1/4)
is PBE.

— Suppose that, (m) = 0, so that player 1 is indifferent when the card is red, so éhét)
[0, 1]. Since this also implies that; (R) = 1, Bayes rule requires that

B 1 1
Cl4o0(r) 4
which is clearly impossible. There is no such PBE.

j = o1(r) =3,

We conclude that this game has a unique PBE, in which playéxdya raises when the card is red, and
bluffs by raising with probability!/3 when the card is black. Player 2 meets with probabity In this
PBE, when player 2 observes that player 1 has raised, hetaghbalief that the card is black js = 1/4,
which is a reduction from her prior belief df,. This, of course, is the MSNE we originally found.
Since player 2’s information set is reached with positivebability under these strategies, it should not be
surprising that this MSNE is a PBE as well (and a SPE).

You might wonder if it is possible to construct a PBE explhaitithe idea that player 2's information
set could be left off the path of play and then assigning sorbigrary beliefs for her to act upon. Since
all PBE are Nash equilibria and the game has a unique MSNEarbkeer is negative. But let’s try it
anyway. To leave player 2's information set off the path @fypit is necessary that; (R) = o1(r) = 0
in that putative PBE. To rationalize player 1's choice whas ¢ard is redg; (r) = 0, it is necessary that
o2(m) = 0, but in that case; (R) = 1, a contradiction. We cannot construct a PBE with stratethiat
do not reach player 2’s information set.

Observe now that you can think of this situation as a simgeading game. Player 1's type is whether
he holds a winning (red) or losing (black) card, and the commdor is that the two types are equally
likely. Since player 1 can condition his choice on the cardhbiels, he has type-contingent strategies that
can potentially reveal something to player 2. That is, afteserving player 1's choice, player 2 can make
inferences about his type. She begins the game thinkingthleag is a 50-50 chance that he holds the
winning card, but after observing him raising, she updatdsetieve that there is a 75-25 chance that this
is so. These are the odds that leave her indifferent betwestimy and passing, which rationalizes her
willingness to mix. Her strategy, in turn, rationalizesy@a 1's willingness to bluff when he holds the
losing card (he always raises with a winning card). Thusygd. raising is a noisy signal that he has a
winning card.

The signal works because player 1 does not always raise vwhieasa losing card. If he were to do that,
o01(R) = o1(r) = 1, then player 2 would not learn anything from observing himseaso her posterior
belief will remain the same as her prige: = 14. But in that case, she will meet for suwe,(m) = 1,
which induces an unacceptable outcome for the player wiha$ing card.

2.2 Classifying PBE by Strategy Types

The discussion of transmission of information by stratedeads to a useful classification of PBE in
incomplete information games depending on how much inftiondhey reveal about the privately known
types of the players:

13



o If all types of a player choose their actions with the saméahbdities, then observing any particular
action conveys no new information about their types, andpibsterior beliefs remain the same
as the priors. These strategies are capedling because all types pool on the same probability
distribution.

e If all types of a player choose different actions with certgi then observing any particular action
fully reveals the information about their type, and the post beliefs assign probability 1 to that
type irrespective of the priors. This is why these strategie callecseparating the actions they
prescribe “separate” the types fully.

e If the types of a player choose different actions with difar non-degenerate probabilities, then
observing any particular action will convepmeinformation about their types, which will lead to
the posterior beliefs getting updated but without caushmgrt to degenerate. This is why these
strategies are callesemi-separating(or semi-pooling, or hybrid): the actions they prescribeeed
something about their types but the other players remaiarteia. The PBE we found in Myerson’s
Card Game involves a strategy for player 1 that is of this.type

In games with one-sided incomplete information (where dagqy is fully informed but the other is
not), the type of strategy the informed player uses in PBHtesnoused to label the PBE itself. Thus,
in Myerson’s Card Game, we would normally refer to the PBE emisseparating. This classification
of strategies (and PBE) sometimes makes it easier to omgamieg’'s analysis, as the following example
shows.

2.3 A Two-Period Reputation Game

There are two firms; € {1,2}, in the market, and their interaction unfolds over two pasioln the first
period, firm 1 can accommodats, or fight (by cutting prices)F', and in the second period, firm 2 chooses
whether to stays, or exit, X, and after that firm 1 chooses whether to cut prices or notcldices are
observable. If firm 1 accommodates and both firms are in th&ehait is a duopoly, and each firin
receives a payoff; > 0. If firm 2 exits, then it receives a payoff of 0, and if firm 1 doegthing else, it
receives the monopoly price;; > dy. If firm 1 fights, firm 2 receivesv, < 0. Firm 1's payoff depends
on whether it prefers a monopoly to cutting prices. The typa prefers monopoly has a price-cutting
payoff of w; < 0, whereas the type that prefers to cut prices has a pricegytayoff w,; > m;. For
simplicity, we shall refer to the type that prefers monopady‘'sane” and the type that prefers to cut-prices
as “crazy”. This type is privately known to firm 1, and firm 2&(mmon knowledge prior) belief that firm
lis sane iy € (0,1). The total payoff for each firm is the discounted sum of itsgeniod payoffs. The
firms have a common discount factbe (0, 1).

Since all PBE are subgame perfect, let us simplify the ganithgy booking at the final information sets
for firm 1 in the second period. Since the firm knows its own tgpd can observe all prior actions, these
information sets are singletons. This means that we cawaltré sequentially rational (subgame perfect)
strategies by backward induction. Since there is no futatiem by firm 2, firm 1’'s behavior at all its final
information sets simply depends on its type: the sane typs dothing, and the crazy type cuts prices. If
firm 2 exits, the payoffs arény, 0) if firm 1 is sane, andw, 0) if it is crazy. If firm 2 stays, the payoffs
are(d, d,) if firm 1 is sane, andw,, w,) if it is crazy. We can now represent the resulting situatidtinw
the extensive-form game in Fig. 6 (p. 15).

Let u; denote firm 2's belief that firm 1 is sane after being foughtia first period, and let, denote
that belief after being accommodated in the first period. ¥Adgrbby deriving firm 2's sequentially rational
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wy +8d;  wy +8my Wy +6w; Wy + dw;
wy + 8d> Wo wa + Swy wy

dy + §dq dy + 8my di + §u dy 4§
dr + 8d; d> dy + dw, d>

Figure 6: The Reputation Game.

strategies at each of her two information sets. Firm 2's etquepayoffs are:

Ur(S|F) = pidy + (1 — pp)ws Ux(S|A) = pady + (1 — u2)wy
U(X|F)=0 Uy(X|A) = 0.
These define a critical threshold value,
wr=—"2c(0,1),
dz — Wy

where the fact that ™ is a valid probability follows fromw, < 0 < d,. The sequentially rational strategies
at both information sets are the same:

o2(S|pw) =1 if > p*
BRx(u) = 1 02(S|w) =0 if < p*
02(S|w) €[0,1] if p = p*.
That is, firm 2 will stay only if it sufficiently convinced théitm 1 is sane.

Turning now to firm 1, observe that strictly dominatesA for the crazy type, which means that
o1(F|crazy) = 1in any PBE. This ensures that the corresponding informa&must be on the path of
play in any PBE, which means tha must be defined by Bayes rule as:

_ po1(F|sang

po1(Flsang + (1 — p)(1)’
whereasu, might or might not be on the path of play, depending on whatdfwe type does. If
o1(A|sang > 0, then Bayes rule requires that it be:

431

B po1(Asang B
27 poi(Alsang + (1 - p)(0)

15



The expected payoffs for the sane firm 1 are:

Ui (F|sane = wy + 8mq + §02(S|w1)(dy — my)
Ui(A|sang = di + §my + 802(S|u2)(di — my).

This defines a condition,

dl—wl
o2 (S —02(S >—————=A>0, 1
2(S|p2) — 02(S|u1) = 5oy —dn) 1)

which we can use to specify the sequentially rational sjsages follows:

o1(F|sang =1 if 02(S|u2) —02(Sp1) > A
BRsane= | 01(F|sang =0 if 02(S|p2) —02(S|ny) < A
o1(Flsang € [0,1] if 02(S|n2) —02(S|p1) = A.

The left-hand side of (1) is the difference in firm 2's probigpiof staying following accommodation,
02(S|u2) and a fight,o2(S|1). The sane firm 1 will fight in the first period only if this difiemce is
sufficiently large; that is, it will fight if firm 2 is much morékely to stay after being accommodated than
after being fought. Another way of saying this is that theesirm 1 will fight in period 1 only if this
makes firm 2’s exit quite a bit more likely in the second periddis it can achieve by increasing firm 2’s
belief that he is the crazy type (which always fights); thabisestablishing a reputation for toughness (or,
better, by bluffing)*

Observe now that ifA > 1, then (1) can never be satisfied. This means that the sane fimasi
accommodate in the first period; (F|sang = 0. Since the crazy type always fights, both of firm 2’s
information sets are on the path of play; = 0 < u* < 1 = u,. This means that firm 2 will exit after
observing a fightg,(S|uw1) = 0, but stay after being accommodated(Su,) = 1. Sincel < A by
supposition, the sane type accommodates. Thereforeif1, the game has a uniqgue PBE, in which the
sane type accommodates in both periods, the crazy type fightsth periods, and firm 2 stays whenever
accommodated, and exits otherwise. Since the stratedigsdueal the type of firm 1, this is separating
PBE.

Assume now tha\ < 1, so it is possible to satisfy (1). Since the crazy type alwfaghss, let us find
the PBE using the sane type’s strategy:

e Pooling: o;(F|sang = 1, which implies thatw; = p andu, is undefined. There are now two
possibilities to consider:

— If p > p*, theno,(S|u1) = 1, which means thad, (S|u2) — 1 < A irrespective of howu,
is defined, and thus; (F|sang = 0, a contradiction. There is no such PBE.

— If p < u*, theno,(S|u1) = 0, and all that is necessary to rationalize the sane typeitesly
iso2(S|u2) > A. Any up > u* will accomplish this (causing firm 2 to stay after accommo-
dation), which means that there is a continuum of PBE in whigth types of firm 1 fight in
the first period, and firm 2 exists if, and only if, it is accormaated. Intuitively, this strategy
works because firm 2 is already quite pessimistic: her prdiebthat firm 1 is sane is very

4| don't like this way of thinking about reputation, for reasowe discussed in class. Briefly, this method conceptuslize
reputation as someone’s belief that you are a type that yeunair (one, perhaps, that you would like to be), rather thair th
belief that you are the type that you are. In this model, tbigceptualization means that the sane type wants firm 2 teveaihat
it is the crazy type, rather than that it is the sane type. Tpthe sounds like bluffing about being someone you are nberat
than establishing a reputation for who you are.
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low, p < u*. With such a belief, staying is too risky, so firm 2 exits eveaugh there is
a positive probability that firm 1 was bluffing and that it ig, fact, sane, and so would ac-
commodate in the second period if firm 2 stayed. All these Pigbath observationally and
payoff equivalent: on the path of play firm 1 fights, and firm &sxSince they only differ in
the off-the-path beliefs that support them, they geeerically uniqgueand so we do not have
a multiple equilibria problem.

e Separating: o1(F|sang = 0, which implies thajt; = 0 andu, = 1. Thisimplies that, (S|u2)—
02(S|u1) = 1 > A, which is satisfied. But them; (F'|sang = 1, a contradiction. There is no such
PBE. (In other wordsA > 1, which we found above to be sufficient for a separating PBEist,e
turns out to be necessary as well.)

e Semi-separating: o1 (F|sang € (0, 1), which impliesu, = 1, and thuso,(S|u2) = 1, so firm
2 must stay after accommodation. Since the sane type musilllmgwo mix, this now means that
02(S|u1) = 1—A € (0, 1), and so firm 2 must be mixing after a fight. This requires that= 1 *,
or, using the definition ofty, that

(I-pp*
= o1(F|sang = ——————.
p(1—p*)

Since this expression is clearly positive, all that is reeglifor it to be a valid probability is that it is

less than one:

por(Flsang
poi1(Flsang +1—p

(1—=pu* .
A L | & > u*.
p(1—p*) p=H

Thus, we conclude that the game has a semi-seprating PBEBlyutvbenp > p*.

We have thus found three solutions: a unique separating P W > 1 that does not depend on the
priors, and, whem\ < 1, a generically unique pooling PBE when< ©*, and a unique semi-separating
PBE whenp > u*. Observe that these PBE are mutually exclusive (if a cordignm of the exogenous
parameters is associated with one of them, then it is notceded with another) and exhaustive (all
possible configurations of the exogenous parameters apeiaies] with an equilibrium). This is great
for predictions since we do not have to deal with indeterwigs that arise when the model produces
more than one solution for some specification of the exogemanables. This, however, is a result of
the restrictive assumption that the crazy type always fighitéch implies that (a) fighting is never a zero-
probability event, and (b) accommodation fully reveals fitisitype. In more common applied models,
the assumptions will not be that stark (and convenient),santthe analysis will become more involved, as
the next example shows.

2.4 Spence’s Education Game

Now that you are in graduate school, you probably have a geason to think education is important.
Although | firmly believe that education has intrinsic valitewould be stupid to deny that it also has
economic, or instrumental, value as well. As a matter of, faeim willing to bet that the majority of
students go to college not for the sake of knowledge and rivt¢hemselves, but because they think

50r maybe not. | went to graduate school because | really didvaot to work a regular job from 8:00a to 5:00p, did not
want to be paid for writing programs (my B.S. is in Computeiefice) even if meant making over 100k, and did not want to have
a boss telling me what to do. | had no training in Politicaleé®hcie whatsoever, and so (naturally) decided it would behneotty.
Here | am now, several years later, working a job from 7:0QBLt60p including weekends, making significantly less mpaag
although without a boss, having to deal with a huge govermin@reaucracy. Was this economically stupid? Sure. Am | app
You betcha. Where else do you get paid to read books, thirdt gneughts, and corrupt the youth?
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that without the skills, or at least the little piece of papiezy get at the end of four years, they will not
have good chances of finding a decent job. The idea is thahjmtemployers do not know you, and

will therefore look for some signals about your potentiab&a productive worker. A university diploma,

acquired after meeting rigorous formal requirements, ¢hsusignal and may tell the employer that you
are intelligent and well-trained. Employers will not onlg more willing to hire such a person, but will

probably pay premium to get him/her. According to this viewgtead of making people smart, education
exists to help smart people prove that they are smart byrfgrtie stupid ones to drop ott.

The following simple model is based on Spence’s (1973) sahaiontribution that preceded the litera-
ture on signaling games and even the definition of equilibraoncepts like PBE. There are two types of
workers, a high ability (H) and a low ability (L) type. The vkar knows his own ability but the potential
employer does not. The employer thinks that the prior priihabf the candidate having high ability is
p € (0, 1), and this belief is common knowledge (perhaps there is g stihdut average productivity in the
industry). The worker chooses a level of education 0 before applying for a job. The cost of obtaining
an educational leved is e for the low ability worker, and /2 for the high ability worker. (In other words
high ability workers find education much less costly.)

The only thing the employer observes is the level of edunatibhe employer offers a wage(e)
as a function of the educational level, and the employergbféas 2 — w(e) if the worker turns out to
have high ability, and — w(e) if he turns out to have low ability. Since the job market is patitive,
the employer must offer a competitive wage such that the a@®gdeprofit is zero. Leju(e) denote the
employer’s posterior belief that the worker has high apitjiven that he observeel level of education.
The employer’s expected payoff is

Ug(e) = u(e)2—w(e)) + (1 — pu(e)(I —w(e)) =1 —w(e) + ule).

Intuitively, the wage starts at the compensation for the atility worker, 1 — w(e), and increases in the
probability that the worker is high abilityz(e). Since in a competitive environment the expected payoff
for the employer is zero, it follows that

w(e) =14 u(e).
The worker’s payoffs are:
Ug(e) = w(e) — % =1+ pe) - % if he is the H type:
Up(e)=w(e)—e =1+ u(e)—e if he is theL type.

Let o (e) be the probability that théd type chooses the level of educatien and letoy (e) be the
corresponding probability for thé type. We can write the employer’s posterior belief (the piulity
that the worker is théf type conditional on an observed level of educatd@as:

og(e)p
or(e)p+or(e)(1—p)

ule) =

With just two types for the worker, there is agoriori reason to expect that any equilibrium would involve
more than two different levels of education. legt denote the level chosen by tli& type, ande;, denote
the level for theL type. We now wish to find the set of PBE.

8Here, perhaps, is one reason why Universities that are aidneegarded better academically tend to attract smadesits,
who then go on to earn big bucks. They make the screening $gauere difficult, and so the ones that survive it are truly
exceptional... Or maybe not if your grandfather went to sdité school and the stadium is named after your family.
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Separating Equilibria. In these PBE¢y # er.. From Bayes' ruleu(ey) = 1 andu(er) = 0, and
so we havew(ey) = 2 andw(er) = 1. With this wage, thel. worker’s payoff isUy (er) = 1 —ep,
so he will choose; = 0 because anything else would make him worse off. What abeut/thvorker?
His payoff isUg (eg) = 2 — ey /2. Observe now that this should be at least as good as mimidkig
behavior: if he does that and chooses= 0, then the employer will conclude that he is the low-ability
type and offer him the wage (er,), so his payoff would bé&/g (0) = 1. His payoff fromeg > 0 must be
at least as good,

Un(efy) > Unl(e]) © 2—ef /2> 1 e}y <2.

We conclude thatd’s equilibrium level of education cannot be too high or elgsewould just get no
education and stick with the low wage. Thiscof 2 as obtaining a Master’s Degree: going for a Ph.D.
will just hurt your bottom line.

On the other handH’s education level cannot be too low or else thaype will try to mimic it. To
see that, observe that in a separating equilibrium, the yp& tilso must have no incentive to imitate the
behavior of the high type. This means that

Ur(ef) > Ur(e;) © 1 >2—ef & e > 1.

We conclude that 's equilibrium level of education cannot be too low or elsédve-ability worker would

be able to acquire it if doing so would convince the emplopat he has high ability. For the educational
level to be separating, it must be so high thatannot profit from imitatingH’'s behavior. Think ok = 1

as obtaining a Bachelor's Degree: if you do not at least ggt then your education cannot possibly reveal
to your employer that you are the high ability type.

We conclude thaty, € [1,2] ande; = 0. Although we have pinned downh’s type, we have not
actually done so for théf type, we have just narrowed the possibilities. In fact, ajye [1,2] can be
sustained in equilibrium with appropriate beliefs.

To see what | mean, picks somag in that range and note that the employer only expects tegee
or no education at all in equilibrium, ary ¢ {e7;, 0} is off the equilibrium path of play. We cannot use
Bayes rule to ensure consistency of beliefs after such ¢idueh levels: iu(e) is undefined. This means
that we can assign any beliefs we want. Consider the follgwigliefs:

0 ife<ef
ple) =14 H
1 ife>ey

These are the simplest beliefs (on and off the path) thatswiitain the choice ofy, in equilibrium.
Deviating to a higher level does not benefit the high-abilityrker because he’s already getting the highest
wage and any additional education represents an unnegessdr Obviously, since the low-ability type
cannot profit fromey;, he certainly cannot profit from a higher level either. If, the other hand, the
high-ability type were to attempt a lower level of educatite employer will infer that he is the type
and offer the minimum wage. This leaves him strictly wordesif he has no incentive to deviate. Clearly,
any deviation to a positive level of education that stilMesathe employer convinced that he is théype
cannot be profitable for the low-ability type either.

We conclude that anyy, € [1,2] can be sustained in PBE using the belief system specifiededbov
Although the solution is indeterminate in the sense thabdétsthot predict the precise level, it does give us

"Other beliefs can work too. For instance, we can assign aigf&aftere > ey, and as long ag(e) is sufficiently low for
e € [1, e;), the high ability type will not deviate. This means that fayaj; in the range there are multiple PBE that can work.
Since there are also infinitr% that can work, we have a serious multiplicity problem. Hoerevor any givery;I, the beliefs
induce the same probability distribution over the outcarseshese PBE are essentially equivalent.
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the important substantive conclusion: in any of these diglthe high type chooses an education level
that is (a) sufficiently high to prevent the low type from ptiofy by acquiring it, and (b) not so high as to
make it unprofitable for himself.

We can now employ some forward induction logic to eliminatebat one of these separating PBE.
Think about it this way: suppose in equilibriuaj, > 1 but the high type deviates o< e < ejy,. With
the off-the-path beliefs we assigned above, he will be phetdswvhen the employer infers that he is the
low-ability type. However, this deviation would not profitet low-ability type even if the employer were
to infer he has high ability. Therefore, the only type who paofit from is the high ability type. But this
means, the employer should believe th&t) = 1. We shall see more of this logic in just a minute, for
now it suffices to say that our original system of beliefs @ppainreasonable for such deviations. The
only reasonable system will be:

0 ife<l

we =y, if e > 1

With these beliefs, only}, = 1 can be supported in equilibrium. Intuitively, the high{apiworker
would pick the lowest possible level of education that cgrasgte him from the low-ability worker. The
low-ability worker cannot profit from choosing this levély (ef;) = 2 —ej; = 1 = Ur(ej), so he has
no incentive to deviate even if doing so would convince theleger that he’s the high ability type. We
therefore have a unique separating PBE wijth= 1 ande; = 0, with the beliefs specified above.

This refinement allows us to make a sharp prediction: the hlgtity worker will pick the lowest
possible education level that will still deter the low-&lgilworker. Education will have instrumental value
because it will reveal to the employer the type of worker hepissidering hiring.

Pooling Equilibria. In these PBE¢y = ¢;, = e*, and Bayes' rule giveg.(e*) = p because the
employer learns nothing. The wage offered them{g*) = 1 + p. With this wage, thd. worker’s type
payoff isUr (e*) = 1 + p — e* and theH worker’s type payoff id/g(e*) = 1 + p — e*/2. Observe
now that the worst that can happen to a worker is for the enaplty conclude that he is the low-ability
type, in which case the wage would tg€e) = 1. In equilibrium, even the low-ability type should be able
to do at least as well by choosing some education as by getoregducation at all and facing (possibly)
the worst-case scenario. That {g; (e*) > 1, which impliese* < p. In other words, only sufficiently
low levels of education can be supported in a pooling equiiib. Any level above that will make the
low-ability worker prefer to get the low wage without inviesgt in education.

Observe that this level is lower than the one required teasuseparatione™ < 1 < ey,. Why was it
necessary to deter the low-ability type from deviationgtedl way up tee = 1 in the separating case but
only up to p in the pooling case? In other words, in the separating easgp, 1) could potentially be
profitable so it was necessary to make sure that the highyatyibe did not pick that level. The reason is
the wage being offered: in the pooling equilibrium the wagg@fe;) = 1 < w(e*) = 1+ p < w(ey) =
2. That is, because the employer is uncertain which type fwisidering, so he will offer less than what
he would have offered to a worker who is known to be of highigbiOn the other hand, the wage has to
be higher than what he would offer a worker of known low apitit else it would be impossible to get the
high-ability worker to invest in any education at all.

At any rate, any™ < p can be sustained in a pooling equilibrium. The system oklelihat can do
that must (a) prevent the low-ability type from investinghimeducation—mimicking the high-ability type
must be profitable, and (b) prevent the high-ability typerfiovesting in more education. Of course, now
everye # e* is off the path, and as a zero-probability event does nowvalle to use Bayes rule to derive
the posterior beliefs. However, the following system cappsuit the pooling equilibrium:

p ife=e*
ple) = : .
0 ifes#e*.
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This is a very simple system (on and off the path): if the eiygdoobserves any unexpected level of
education, he decides that the worker is the low-abilityetypny deviation frome* will then cause him
to offerw(e) = 1 < w(e*) = 1 + p. Clearly, these beliefs will prevent any deviatioreto- ¢* for either
type. We also know that* < p ensures that the low-ability worker would not want to stagdurcated.

It is easy to see that this means that the high-ability wovkkeuld not want to say uneducated either:
Up(e*) > Ur(0) = Ug(e*) > Uy (0). To see that, observe thé, (e¢*) > U (0) = ¢* < p. This now
meandUgy (e*) =1+ p—e*/2>1+ p—p/2=1+ p/2 > 1= Ug(0). In other words, no type will
want to deviate. Therefore, amy < p can be supported in a pooling equilibrium with these beflefs

By a logic analogous to the one above, there is no reason ecewwrkers to invest in any education
if doing so would reveal nothing about their abilities. Thiggument would eliminate all pooling PBE
except the one witlk* = 0 where no worker invests anything in education and the eneploffers a
wage is higher than the minimum but less than the maximum. khowh higher depends on his prior
belief that the worker is of high ability: the stronger thiglibf, the higher the wage he will offer. Note
that uncertainty here hurts the high-ability worker (whésgesalary lower than what the employer would
have offered if he knew his type) and benefits the low-abdite (who gets a salary higher than what the
employer would have offered if he knew his type). This wilhgeally be the case in these signaling games.

Semi-separating Equilibria. | leave these to you as an exercise.

Observe now that the model seems to be making two complepglgsite predictions about the instru-
mental value of education. If we predict the separating RB& pur conclusion would be that education
is a very useful signaling device. If, on the other hand, welft the pooling PBE, then we conclude that
education is completely useless as a signaling device. S&hwait?

It would be nice if we could eliminate one of the equilibriugpés. The obvious candidate for that are
the pooling PBE because in them the employer’s beliefs aspesi: to prevent the high-ability worker
from attempting to reveal his type by choosing a higher lefetducation, the employer threatens that
whenever he sees very high education levels, he will infat the worker is the low-ability type. This
inference seems implausible.

Let me make this a bit more intuitive. Suppaskis a high-school diploma, and= 3/, is a Master’s
Degree. The employer’s belief essentially says, “| expedde resumes where high-school diploma is
the educational level and will believe that the candidatefikigh ability with probability p; if | see a
master’s degree, | will conclude that the candidate is ofadility for sure.” This seems incredible: since
acquiring education is costly, the only type who could poédly profit by getting more is the high-ability
type. The employer is “threatening with incredible beliefsmuch the same way players could threaten
with incredible actions off the equilibrium path. What leéé would be more reasonable?

Suppose thap = /5 and you are the employer and you get a resume with a Mastagieel@and a
cover letter that states:

| know that you now think | have low ability because | acquieeMaster's degree. However,
suppose you believed that | am the high-ability type instedolu would offer me the high
wagew = 2. If | am really the high-ability type, my payoff will bé — (35)(142) = 5/a.
If, on the other hand, | am the low-ability type, my payoff idbbe2 — 3/ = 14. If | had
invested in a high-school diploma only, you would have @&fteme the wagey = 14+ p = 6/s.
Observe now that | can potentially profit from a Master’s éegonly if | really am the high-
ability type becausé/s > 6/s > 1. In other words, if | were the low-ability type, then |
would not profit from getting a Master’s degree even if doingagere to convince you that |
was the high-ability type. | would never acquire a Masteegme if | am the low-ability type.

8Again, there are other beliefs that can work here but theindiice the same probability distribution over the outcotees
all resulting PBE are essentially equivalent.
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Therefore, | could only have acquired it because | am the-hlgjlity worker. Therefore, my

Master’s degree is a credible signal that | am the hightgibiiorker. Therefore, you should
update to believe that | am the high-ability worker. (Whickans you should offer me the
high wage.)

In fact, for anyp < 1, we can always fin@ € [1,2] which the high-type would prefer to choose
if doing so would convince the employer that he is the higtetppt that the low-type would not pick.
This argument (known as the Intuitive Criterion) would ehiate the pooling equilibria. We say that the
pooling PBE arainintuitive and therefore should not be considered as substantiveefmesdof play. This
leaves the separating PBE. Of course, we already saw thatilarsforward induction logic eliminates all
but one of these as well. We are then left with a very sharpigiied: education is useful and high-ability
workers will acquire the minimum level that is sufficient teter the low-ability types from getting it.

There are two substantive insights you should take away fremmesult. First, the only way for a high
ability worker to get the high-paying job he deserves is gmal his type by investing in costly education.
Otherwise, the employer will treat him as a low-ability werkThis corresponds quite well to the empirical
observation that workers with more years of schooling oratlexage tend to earn higher wages.

Second, the value of education as a signaling device depautdsn the skills that workers receive
through it, but on the costs they have to pay to acquire it. drhieal insight here is that for education to
be useful as a signalling device, it is sufficient that edooais costlier for the low ability type to acquire.
It does not matter if education really has any value addedrms &s it is less costly for the high-ability
type.

Finally, this result may be normatively troubling for it &sts that low-ability workers will be doomed
to lower wages and education is the institution that enforttés inequality. If it is true that there is
no intrinsic value-added to education, then universities ssimply perpetuating the wealth inequalities
associated with abilities. Now, you may think that it's okttigh-ability workers always earn more than
low-ability ones. |, on the other hand, prefer to think tHag tUniversity can educate a previously low-
ability person and turn him/her into a high-ability workbat a firm can hire at a higher wage. Whatever
you believe, it is obvious that we should both support stiehdards for University education: if standards
lapse, even low-ability types will be able to acquire it, dhid will force high-ability types to aim even
higher to get employers to offer better wages. We have, i &sen this already. With the decline of
high-school education, more and more employers startegbgine bachelor’'s degrees before they would
offer better salaries. As more students without adequatkgoaund flooded universities, many of them
reacted by watering down the requirements so they can kesjugtion rates up. The predictable result
is that now you need to go for a Master’s degree because a Bdstis no longer informative of quality.
But obtaining a Master’s degree is very expensive and it noayeaally improve your skills much beyond
what a good Bachelor’s degree can. It seems it will be in oorroon interest to strengthen the University
requirements. Now this is how you can stretch a formal modsl beyond its capacity! But hey, don't let
anyone tell you that we are not interested in policy reconada#gans!

3 Computing Perfect Bayesian Equilibria
We now look at several examples of how we can characterizeiPBEensive form games.

3.1 TheYildiz Game

Consider the game in Fig. 7 (p. 23) from notes by Muhamet Xilddackward induction on player 1's
actions at his two penultimate information sét3 and 1.4 tells us that in any PBE he must be choosing
e andh respectively. Furthermore, &2 he must be choosing because doing so would yield a strictly
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higher payoff (of 0) no matter what player 2 does. This is vagvenient for it ensures that player 2's
information set will always be reached with positive prabgbin any equilibrium, so we do not have to
worry about off-the-path beliefs. We conclude that in anyePBlayer 1's strategy must specify playidg
atl.2, e atl.3, andh at 1.4, each with probability 1.

4.4 5,2 3,3
a L e
b | R | S I_s
1—x - 1.3
-2
d «x R 14 p 0.-5
c L g
—1,4 0,2 —-1,3

Figure 7: The Yildiz Game.

Let x denote player 2's posterior belief that she is at the loweerin her information set. Suppose that
player 1 also chooseswith certainty. In this case, Bayes rule would pin down pta8/e belief tox = 1,
in which case she would certainly chooke But if she choosed. at her information set, then player 1
could do strictly better by choosirtginstead ofz at his information set.1, and therefore it cannot be the
case that in PBE he would choasevith certainty.

Suppose now that player 1 chasevith certainty atl.1. In this case, Bayes rule pins down player 2’s
belief tox = .1/(.1 4+ .9) = .1 (intuitively, she can learn nothing new for player 1's anjioGiven player
1's sequentially rational strategy at his last informatsmts, the expected payoff from choosihdhen is
(.1)(2) + (.9)(2) = 2, and the expected payoff from choosiRghen is(.1)(—5) + (.9)(3) = 2.2. Hence,
the only sequentially rational strategy for player 2 wouddtb chooseR with certainty. However, if she
choosesk for sure, then player 1 can do better by playingt the information set.1 because this would
give him a payoff of4, which is strictly better than the payoff 8fhe would get from playing for sure.
Therefore, it cannot be the case that in PBE he would chbagith certainty.

We conclude that in equilibrium player 1 must be mixing abmfation setl.1. Let p denote the
probability with which he chooseb, and letg denote the probability with which player 2 choosks
Because player 1 is willing to mix, it follows that the expetipayoff from choosing must be the same
as the expected payoff from choosibgor 4 = ¢(3) + (1 — ¢)(5), which givesq = .5. That is, because
player 1 is mixing in equilibrium, it must be the case thatpla2 is mixing as well.

But for player 2 to be willing to mix, it must be the case thag ghindifferent between choosingand
R at her information set. That is, the expected payoff frbmmust equal the expected payoff froR) or
x(2) + (1 —x)(2) = x(=5) + (1 — x)(3), which givesx = 1/5. Only if her posterior belief is exactlyk
would she be willing to mix.

From Bayes rulex = (.1)(1)/[(.1)(1) + (.9) p], and hence player 1 must chogsesuch thatr = 1/.
Solving the equation yields the correct value for= 7/9, and so this must be the equilibrium mixing
probability for player 1 aii.1. We conclude that the game has a unique perfect Bayesialibeigun in
the following strategies:
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e Player 1 chooses with probability 7/9 at 1.1, and chooses with certaintyat 1.2, e at 1.3, andh at
1.4;

e Player 2 chooseg with probability 1/>.

Player 2's beliefs at her information set are updated acogr Bayes rule tor = 1/3. The strategies
are sequentially rational given the beliefs and beliefscaresistent with the strategies. Hence, we have a
PBE.

3.2 The Myerson-Rosenthal Game

This makes the previous example a bit more complicated. drildiz Game, player 1 is the informed
party (knows the outcome of the chance move by Nature) angepla is the one who has incomplete
information. Player 2 will attempt to infer information froplayer 1's actions and because the players
have somewhat conflicting interests, player 1 obfuscatemflrence by playing a mixed strategy (which
prevents player 2 from learning with certainty what he knpv@nce the informed player moves first, this
is an instance of a sighaling game. The game in this secti@rges this: the first mover is the uninformed
player now and he must take an action that would induce ttex pthyer to reveal some information. Since
the preferences are again somewhat conflicting, playerlzaike incentives to obfuscate this inferences
in her turn, making the screening process harder for player 1

0,0 -1,5 4,4 3,9
S S s’ S’
/ ’
g ! G 1—y ! g ! G 8’8
2.1 : 2.2
1
g : g
5 8,8
S s’
0,0 4,4

Figure 8: The Myerson-Rosenthal Game.

The game is depicted in Fig. 8 (p. 24). The interpretationsidallows. Players take turns being
generous or selfish until someone is selfish or both have beergus twice. Each player loses $1 by
being generous, but gains $5 each time the other player eygas (So actions, S, s’, andS’ are selfish,
butg, G, andg’, andG’ are generous.) The catch is that player 1 is unsure whethgep? is capable of
being selfish: he estimates that with probabilif/z¢o she can be selfish but with (small) probabiligo
she is the virtuous kind whose integrity compels her to begars regardless of player 1's behavior. That
is, she always chooses to be generous whenever she has to@iaairse, player 2 knows her own type.

At his first information set, player 1 believes that playes 2irtuous with probabilityl 0. Let y denote
his (posterior) belief that she is virtues after they hakematwo generous actions. Observe now that at
her last information set.2, the selfish player 2's only sequentially rational choic8’iswhich means that
in any PBE she will always be selfish there. We now have to fieddist of the strategies and beliefs.
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Suppose player 1 chosg with certainty in equilibrium. The only way this would be septially
rational is if the expected payoff fromi did not exceed the expected payoff fragrhgiven 2's sequentially
rational strategy, or ift < 8y + 3(1 — y), which requiresy > 1/5. Because 1 is choosing for sure,
player 2's expected payoff from choosidgat 2.1 is 9, which is strictly better than gettingby playing
S, and so she would certainly choo&e Given that she would choogg, player 1's expected payoff from
choosingg at his first information set would bel/20)(8) + (19/20)(3) = 3.25, which is strictly greater
than 0, which is what he would get by playing Therefore, he would choogefor sure. But this means
that player 1's second information set is now along the pathay, and Bayes rule gives

1
y = WEUIL, = lho < /s,
(120)(1) + (*9/20)(1)

which contradicts the necessary condition that makes gyl with certainty sequentially rational.
Therefore, there cannot be a PBE where player 1 chagssith certainty.

Suppose player 1 choséwith certainty in equilibrium. The only way this could be seqtially rational
is (by reversing the inequality in the previous paragraph)« 1/5. Because 1 is playing for sure, player
2 would certainly choosé at2.1 because the expected payoff is strictly greater. Given éguentially
rational strategy, choosingwould yield player 1 the expected payoff 6f1/20) + (—1)(1%9/40) = —3/a.
Hence, the sequentially rational choice at this informmatiet iss. This leaves player 1's second informa-
tion set off the path of play, so Bayes rule cannot pin downbieefs there. In this case, we are free to
assign any beliefs, and in particular we can assign sprael/s. We have therefore found a continuum of
PBE in this game:

e Player 1 choosesands’ with certainty at the respective information sets; if herdirels himself at
his second information set, his beliefjis< 1/s;

e Player 2 choose$ at2.1 andS’ at2.2.

We have a continuum of PBE because there is an infinite nunflimliefs that satisfy the requirement.
However, all these PBE are equivalent in a very importanseethey predict the same equilibrium path
of play, and they only differ in beliefs following zero-prahbility events.

This may be a bit disconcerting in the sense that this egjuiliib seems to require unreasonable beliefs
by player 1. Here’s why. Suppose there is an extremely smaligbility ¢ > 0 that player 1 makes a
mistake at his first information set and playsnstead ofs. Then, using Bayes rule his posterior belief
would have to be:

(120)€

Y7 (o) + (%0)€02(G)
because the only way to get to player 1's second informagbmveuld be from the lower node at his first
information set (recall that player 2 choossand sa» (G) = 0). Note that this is true regardless of how
smalle we take. Buty = 1 contradicts the requirement that< 1/s. In other words, it does not seem
reasonable for player 1 to hold such beliefs because evesiigiest error would requirg = 1.

The PBE solution concept is too weak to pick out this probl&he stronger solution conceptsgquen-
tial equilibrium will eliminate all of the above PBE that require these unoeable beliefs. Intuitively,
sequential equilibrium simply formalizes the argumentfrie previous paragraph. Instead of requiring
that beliefs are consistent along the equilibrium path ,oihlsequires that they arkilly consistent that
is, that they are consistent for slightly perturbed behastoategies that reach all information sets with
positive probability (and so Bayes rule would pin beliefsvdoeverywhere). A belief vectar is fully
consistent with a strategy if, and only if, there exist behavior strategy profiles thag arbitrarily close
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to o and that visit all information sets with positive probatyilisuch that the beliefs vectors that satisfy
Bayes rule for these profiles are arbitrarily closerto

Sequential equilibria are therefore a subset of the peBagesian equilibria and, more importantly,
always exist. Unfortunately, they can be quite difficult mmpute because checking full consistency
requires finding the limits of systems of beliefs in sequenaegames in which the perturbed behavior
strategies converge to the strategies under consideraiiEnwill not cover sequential equilibria in this
class. However, let's see how the idea of full consistencyld/@liminate the PBE we just found. The
posterior beliefy is given by:

_ (Y20)01(8) _ 1
(120001(g) + (1%20)01(8)02(G) 1+ 1902(G)’
where the latter inequality would have to hold even whefg) = 0 because it would hold for any slightly

perturbed behavior strategies with(g) > 0. Returning to our solution, the requirement that /s then
translates into:

y

1 1 4
— < - 5 0(G)> —.
[T 190,(G) —5 720 2 15

However, as we have seen, player 2's only sequentiallynatistrategy is to play with certainty, and
s00,(G) = 0, which contradicts this requirement. Hence, no beliefs 1/5 are fully consistent, and
therefore none of these PBE are sequential equilibria.

Finally, we turn to the possibility that player 1 mixes at Becond information set in equilibrium.
Since he is willing to randomize, he must be indifferent kadw his two actions, or in other words,
8y + 3(1 — y) = 4 which yieldsy = 1/5. As we have seen already,

1 1 4
= - & 02(G) = —.

Y T 1T 1902(G) ~ 5 19

This is the full consistency requirement that must also hiol&@BE for anyo;(g) > 0. If player 2 is
willing to randomize, she must be indifferent between hear &stions:5 = 401 (s") +9(1 —o1(s’)), which
implies thatoq (s’) = 4/5. Turning now to player 1's move at his first information sétpasingg would
yield an expected payoff of

(1920)[ (=1)(1 = 02(G)) + (401(5)) + 3(1 = 01())02(G) | + (120) [401(5)) + 8(1 = 01(s")

= (190)[ (~1D)(15/19) + (4(¥s) + 3(1/9)($19) | + (1120)[4(¥5) + 8(1/5)| = 1/s

Because this expected payoff is strictly greater than Oclvis what player 1 would get if he chose
sequential rationality requires that he choogasith certainty. We conclude that the following strategies
and beliefs constitute a perfect Bayesian (and the unioqgeeseial) equilibrium withy = 1/s:

e Player 1 chooseg with probability 1, ands’ with probability 45;
e Player 2 choose& with probability 419, andS’” with probability 1.

Substantively, this solution tells us that player 1 musiitbédge game by being generous. Small amounts
of doubt can have significant impacts on how rational playaisave. If player 1 were sure about 2's
capacity for being selfish, then perpetual selfishness woikthe only equilibrium outcome. If, however,
it is common knowledge that player 2 may be generous by dismosthe result is different. Even when
player 1 attaches a very small probability to this event, hestnibe generous at least once because this
would encourage 2 to reciprocate even if she can be selfisa.s@&lfish player 2 would reciprocate with
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higher probability because she wants player 1 to updatedhisf® to an even higher probability that she is
virtuous, which would induce him to be generous the secand &round, at which point she would defect
and reap her highest payoff of 9. Notice how in this PBE playsmosterior belief went from /2o up

to y = 1/5. Of course, the selfish player 2 would not want to try to malaigguplayer 1's beliefs unless
there was an initial small amount of uncertainty that wowddse player 1 to doubt her capacity for being
selfish.

3.3 One-Period Sequential Bargaining

There are two players, a sellSrand a buyerB. The buyer has a pot of money worth but the seller
does not know its exact amount. He believes that it is= $20 with probability 7, andv = $10 with
probability 1 — 7. The seller sets the prige > 0 for a product that the buyer wants to get at the cheapest
price possible. After observing the prick,either buys, yielding the payoff vectép, v — p), or does not,
yielding (0, 0). The game is shown in Fig. 9 (p. 27).

p,20—p 0,0 p,10—p 0,0
Figure 9: The One-Period Bargaining Game.

Player B would accept any < 20 at her left information set (that is, if she received $20) amalild
accept anyp < 10 at her right information set (that is, if she received $10).other words,B buys iff
v > p. This means that if sets the price gt = $10, then he is sure to sell the product and get a payoff
of 10. If he sets the price ab < p < 20, thenB would only buy if she had $20, in which case the seller’s
expected payoff iz p. Finally, the seller's payoff for any > 20 is zero becaus® would never buy.

Consequently, the seller would never ask for more than $2€sgrthan $10 in equilibrium. What is he
going to ask for then? The choice is between offering $10¢wis the maximum a poa® would accept)
and something the ricl® would accept. Because apy> 10 will be rejected by the pooB, the seller
would not ask for less than $20, which is the maximum that ittie B would accept. Hence, the seller’s
choice is really between offering $10 and $20. When wouldffer §207?

The expected payoff from this offer 7, and the expected payoff from $10 is 10 (because it is always
accepted). Therefore, the seller would ask for $20 when®yer> 10, or = > 1/. In other words, ifS
is sufficiently optimistic about the amount of money the buyas, he will set the price at the ceiling. If,
on the other hand, he is pessimistic about the prospect, h&lset the price at its lowest. The seller is
indifferent atr = 1/.
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3.4 A Three-Player Game

Let’s try the game with three players shown in Fig. 10 (p. 28)is is a slightly modified version of a game
in notes by David Myatt.

4,4,4 6,1,1 5,5,0 2,2,2
Figure 10: The Three Player Game.

Player 3's expected payoff from choosiagis 4x + 0(1 — x) = 4x, and his expected payoff from
choosingb is x + 2(1 — x) = 2 — x. The sequentially rational best response is:

1 if x> 2/s
o3(a) =30 if x <25
[0,1] otherwise

Suppose then that > 2/5, and so player 3 is sure to choasat his information set. In this case, player
2 would strictly prefer to choosg&, and given this strategy, player 1's optimal choiceDis Given these
strategies, Bayes rule pins down= 0, which contradicts the requirement that- 2/s. Hence, there is
no such PBE.

Suppose now that < 2/5, and so player 3 is sure to chodsat his information set. In this case, player
2 strictly prefers to choosB. Given her strategy, player 1's best response woulll bin this case, Bayes
rule pins downx = 1, which contradicts the requirement thak 2/5. Hence, there is no such PBE.

We conclude that in PBE; = 2/5, and so player 3 would be willing to mix. Player 2’s expectegiqdf
from L would then b&aos(a) 4+ 2(1 — 03(a)) = 303(a) + 2, and her payoff fronR is 3. Hence, her best
response would be:

1 if o3(a) > 13
o2(L) = 10 if 03(a) < 1/3
[0,1] otherwise

Suppose then that;(a) > 1/3, and so she would choode for sure. In this case, player 1's expected
payoff fromU is 4o3(a) 4+ 6(1 —03(a)) = 6 —203(a). His expected payoff fronD would be5o3(a) +
2(1 — 03(a)) = 2 4 303(a). He would therefore choosg if o3(a) < 4/s, would chooseD otherwise,
and would be indifferent whews (a) = 4/s. However if he choose® for sure, then Bayes rule pins down
x = 0, which contradictsx = 2/s. Similarly, if he choose4/ for sure, Bayes rule pins down = 1,
which is also a contradiction. Therefore, he must be mixivigch implies thabvs(a) = 4/s > 1/3, and so
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player 2’s strategy is sequentially rational. What is th&ing probability? It must be such that= 2/s,
which implies thatr; (U) = 2/s. We conclude that the following strategies and beliefs titarte a perfect
Bayesian equilibrium:

e Player 1 choose® with probability 25
e Player 2 chooses with probability 1
e Player 3 choosesg with probability 45, and updates to believe= 2/s.

Suppose now thad;(a) < 1/3, and so player 2 would choose for sure. In this case, player 1's
expected payoff fronD is 3, which means that he would chodseif 6 — 203(a) > 3. But sinceos(a)
can at most equal 1, this condition is always satisfied, aackfore player 1 would always chooge In
this case, Bayes rule pins down= 1, which contradicts the requirement that= 2/s. Hence, there can
be no such PBE.

Finally, suppose thais(a) = 1/3, and so player 2 is indifferent between her two actions. &ldys
expected payoff fronD in this case would be:

3(1 = 02(L)) + 02(L)[ 5(1/3) +2(33) | = 3.

As we have seen already, in this case he would strictly ptefeinoose’/. But in this case, Bayes rule pins
downx = 1, which contradicts the requirement that= 2/s. Hence, no such PBE exists. We conclude
that the PBE identified in the preceding paragraph is theugngplution to this game.

3.5 Rationalist Explanation for War

Two players bargain over the division of territory reprdeenby the interval0, 1]. Think of 0 as player
1's capital and 1 as player 2's capital. Each player preferget a larger share of territory measured in
terms of distance from his capital. Assume that playersiakeneutral, and so the utilities of a division
x € [0, 1] areu;(x) = x anduy(x) = 1 — x, respectively.

The structure of the game is as follows. Nature draws the #recasts of player Z;,, from a uniform
distribution over the intervel0, 1]. Player 2 observes her costs but player 1 does not. The wer @bs
player 1,¢1 € [0, 1], are common knowledge. Player 1 makes a demard[0, 1], which player 2 can
either accept or reject by going to war. If she goes to waygsla will prevail with probabilityp € (0, 1).
The player who wins the war, gets his most preferred outcome.

We begin by calculating the expected utility of war for botayers:

Uy(Warn) = pui(1) + (1 = pJu1(0) —cy = p—ci
Ur(Warn) = puz(1) + (1 = pJuz(0) —co =1 —p —ca.

Before we find the PBE of this game, let's see what would happeler complete information. Player 1
will never offer anything less than what he expects to geh figthting, and hence any offer that he would
agree to must be > p — ¢q. Similarly, player 2 will never accept anything less tharaivbhe expects to
get with fighting, and hence any offer that she would agreeustinel —x > 1— p —c¢3,0rx < p + c3.
Hence, the set of offers thabth prefer to war igp — c1, p + ¢2]. Because costs of war are non-negative,
this interval always exists. In other wordbere always exists a negotiated settlement that both @aye
strictly prefer to going to war With complete information, war will never occur in equiilom in this
model.

What happens with asymmetric information? Since player@uenher cost when the offer is made, we
can figure out what offers she will accept and what offers sitle@ject. Accepting an offex yields her
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a payoff of1 — x, while rejecting it yields her a payoff df— p — ¢,. She will therefore accept an offer if,
and only if,1 —x > 1 — p — ¢3, or, in terms of the costs, if

cy > Xx—p.

Player 1 does not know whai is, but knows the distribution from which it is drawn. Frons pierspective,
the choice boils down to making an offer and risk gettingjieceed. Given player 2's sequentially rational
strategy, from player 1's perspective the probability thatoffer x is accepted is the probability that
¢z > x — p, or, given the uniform assumption,

Prico>x—p)=1—-Pr(cao <x—p)=1—x+ p.

Hence, if player 1 makes an offer it will be accepted with probability — x + p, in which case he would
obtain a payoff ofr, and it will be rejected with probability — 1 + x — p = x — p, in which case he
would obtain an expected payoff pf— ¢;. The expected utility from offering is therefore:

Ur(x) = (1 —x+ p)(x) + (x = p)(p —c1).
Player 1 will chooser that maximizes his expected utility:

dU;(x)
ox

The perfect Bayesian equilibrium is as follows:

1+2p—c1

=1—2x+2p—61=0<:>x*= >

e Player 1 offers mifmax0, x*}, 1}.
e Player 2 accepts all offers < ¢, — p, and rejects all others.

In the PBE, theex anterisk of war isx* — p = 1‘% > 0 as long ag; < 1. In other words, the risk of war
is always strictly positive. This contrasts the compleferimation case where the equilibrium probability
of war is zero. Hence, this model provides an explanationoef rational players can end up in a costly
war. This is the well-knownisk-return trade off: player 1 balances the risk of having an offer rteiéc
against the benefits of offering to keep for himself sligmtigre. This result persists in models with richer
bargaining protocols, where pre-play communication isvedid, and even where players can intermittently
fight.

3.6 The Perjury Trap Game

This one is from notes by Jean-Pierre Langlois. All simiiasito any people, living or dead, or any events,
in Washington D.C. or elsewhere, are purely coincidentaprésecutor, whom we shall call (randomly)
Ken, is investigating a high-ranking government officiahatn we shall call (just as randomly) Bill. A
young woman, Monica, has worked for Bill and is suspectedyifgl earlier to protect him. Ken is
considering indicting Monica but he is really after the ligdish: he has reason to believe that Monica
holds some evidence concerning Bill and is hoping to getdeobperate fully by offering her immunity.
The problem is that he cannot be sure that she will, in facipetate once granted immunity and even if
she does cooperate, the evidence she has may be trivial. vidgveence her testimony will force Bill to
take a public stand, Ken hopes to trap him into perjury oradtiénto admitting his guilt. Monica is most
afraid of being discredited and, all else equal, would natia lie. She really wants to be vindicated if
she tells the truth or else to see Bill admit to all the factil, 8f course, wants to avoid getting trapped or
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no no

4,4,5 5.6.4
immunity immunity
2.3.8 ____lie_ ] Monica Monica|  lie 3.2.7
truth truth
6.7.3 —admit lx Bill . x| admit g,
deny deny
8,5,1 1.1.6
[perjury trap] [Bill escapes trap]

Figure 11: The Langlois Perjury Game.

admitting to any transgressions. Assuming that both KenBalhdstimate that there’s 80 : 50 chance of
Monica’s evidence being hard, Fig. 11 (p. 31) shows one plesspecification of this game.

We begin by finding the sequentially rational strategiestiier players. Bill will deny whenever the
expected payoff from denyind/g (D), exceeds his expected payoff from admitting (A4). Let x denote
Bill's belief that the evidence is hard when he takes thedstdimen,

Up(D) =x(1)+ (1 —x)(6) =6—5x
Up(A)=x3)+(1—-x)2) =2+ x,

so he will deny wheneves — 5x > 2 + x = x < 2/3. That is, Bill will deny if he believes that the
evidence is hard with probability less thas; otherwise, he will admit guilt. He is, of course, indiffate
if x = 2/3, so he can randomize.

Turning now to Monica. Although she knows the quality of tivédence she has, she is not sure what
Bill will do if she tells the truth. Letp denote the probability that Bill will deny if he is called tedtify.

If the evidence is hard, Monica will therefore expect to §et+ 7(1 — p) if she tells the truth and 3 if
she lies. Observe that her payoff from telling the truth iseast 5, and as such is always strictly better
than her payoff from lying. That is, telling the truth sthjctlominates lying here. This means that in any
equilibrium Monica will always tell the truth if the evideads hard.

What if the evidence is soft? Lying gives her a payoff of 2, velae telling the truth gives her an expected
payoff of 1p + 8(1 — p) = 8 — 7p. Therefore, she will tell the truth B —7p > 2 = p < 6/;. That s, if
Monica knows the evidence is soft, she will tell the truthhiésexpects Bill to deny it with probability less
than ¢/7; otherwise she will lie. (Ifp = ¢/7, she is, of course, indifferent and can randomize.)

We can now inspect the various candidate equilibrium pobletype:

e Pooling Equilibrium. Since Monica always tells the truth when the evidence is ,hédrel only
possible pooling equilibrium is when she also tells thehtitithe evidence is soft. Suppose that in
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equilibrium Monica tells the truth when the evidence is sdth make this sequentially rational, it
has to be the case that< ¢/;. If Ken offers immunity, he will expect her to tell the trutlo matter
what, so his expected payoff from doing so is:

Ug(I) = (1) 8p + 6(1 = p)l + (12) [Ip + 7(1 — p)] = (1/2)(13 — 4p).

If he decides not to offer immunity, then his expected payolix (N) = (12)(4) + (12)(5) =
(1/2)(9). Hence, he will offer immunity whenevérg (1) > Ug(N), or whenl3 —4p > 9 =

p < 1. That is, no matter what Bill does, Ken will always offer imnity. If that's the case, Bill
cannot update his beliefs: Ken offers immunity and Monidis the truth regardless of the quality
of evidence. Therefore; = 1/, which implies that Bill will, in fact, deny for sure (recatat he
does so for anyw < 2/3). Hence,p = 1, which contradicts the requiremept < 6/;, which is
necessary to get Monica to tell the truth when the evidensefis This is a contradiction, so such
an equilibrium cannot exist.

Separating Equilibrium. Since Monica always tells the truth when the evidence is,Hialonly
such equilibrium involves her lying when it is soft. Suppdisat in equilibrium Monica lies when
the evidence is soft. To make this sequentially rationdiag to be the case that> ¢/;. If Ken
offers immunity, he expects a payoff of:

Ug(I) = (12) [8p + 6(1 — p)l + (12)3) = (12)(9 + 2p).

We already know that his expected payoff from not making dera$ (1/)(9), so he will prefer
to offer immunity wheneved 4+ 2p > 9 = p > 0. That is, no matter what Bill does, Ken will
always offer immunity. This now enables Bill to infer the tjtyaof the evidence with certainty:
since Ken offers immunity no matter what but Monica onlygahe truth if the evidence is hard, if
Bill ever finds himself on the witness stand, he will know ttia evidence must be hard for sure;
that isx = 1. In this case, his sequentially rational response is to aguiit (recall that he does
so wheneverp > 2/3), which meansy = 0. But this contradicts the requirement that> 6/,
which is necessary to get Monica to lie when the evidencefis Bhis is a contradiction, so such an
equilibrium cannot exist.

Semi-separating Equilibrium. Since Monica always tells the truth when the evidence is, i
only such equilibrium involves her mixing when the evidegsoft. Suppose that in equilibrium
Monica mixes when the evidence is soft. To make this secaintational, it has to be the case that
p = ©/7, which means that Bill must be mixing as well, which implies= 2/3. Letg denote the
probability that Monica tells the truth when the evidenced8t. If Ken offers immunity, he expects
a payoff of:

Ug(I) = (2) [8p + 6(1 — p)] + (1/2) [g(1p +7(1 — p)) + (1 —q)(3)]
=(12)[9+2p+29(2-3p)].
As before, his expected payoff from making no offef i%)(9), which means that he will prefer to
offer immunity wheneve® + 2p + 2g(2 —-3p) > 9 = p +q(2 —3p) > 0. Usingp = 6/, this
reduces tgy < 3/. In other words, he will offer immunity no matter what probiip ¢ Monica
uses. This now pins down Bill's posterior belief by Bayederu

o pOO 1
(MO + ()(Dg  T+q

Because Bill is willing to mix, we know that = 2/3. Substituting this in the equation above and
solving forg yields: g = 1/. This is the unique PBE.
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Therefore the following strategies constitute the unigeeqet Bayesian equilibrium of the Perjury
Game:

e Ken always offers immunity;

¢ Monica tells the truth if the evidence is hard, and tells tiht with probability 1/ if the evidence
iS soft;

¢ Bill denies with probabilitys/7, believes that the evidence is hard with probabifity.

The gamble is worth Ken'’s while: the probability of catchiBdj in the perjury trap equals the likelihood
of Monica having hard evidence/,, times the likelihood that Bill denies the allegatiofs, for an overall
probability of 3/7, or approximately 43%. Bill is going to have a hard time irsthame.
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