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The Nash equilibrium definition of rationality is too weak topick out moves that fail to satisfy its re-
quirements when these moves occur off the path of play. This is not a problem in strategic-form games,
where the dynamic element is lost and as a result players cannot condition their behavior on their knowl-
edge about what has happened in the game by the time they have to act. In extensive-form games that
preserve the idea of sequences of actions, this weakness of Nash equilibrium is a serious problem because
it sometimes rationalizes behaviors along the path of play by expectations that involve non-rational be-
havior off the path of play. Since the contingencies where such behaviors occur do not arise with positive
probability if the equilibrium strategies are followed, the Nash requirement of best-responding while hold-
ing the other players’ strategies fixed cannot eliminate such strategies (in a sense, Nash equilibrium cannot
evaluate the optimality of a player’s behavior in contingencies it cannot “see” under the strategies of the
other players). We resolved this by strengthening the definition of rationality to require that strategies
remain best-responses in these contingencies as well (subgame-perfection).

Since static games of incomplete information also ignore the notion of sequencing, Baeysian Nash
equilibrium (which is really just Nash equilibrium in the Harsanyi-transformed game that represents the
incomplete information) will similarly fail to identify the analogous suboptimal behavior if the dynamic
element is introduced. This means that we need to provide theanalogue to subgame perfection for games
of incomplete information: a definition of rationality thattakes into account what players know when it
is their turn to move. The problem now is that after the Harsanyi transformation that converts the game
into one of imperfect information, we are usually left with very few, if any, proper subgames to analyze
because of the non-singleton information sets after Nature’s “move”. In this setting, subgame perfection
will usually have no bite because it does not allow us to splitinformation sets. The strengthening of our
definition of rationality will do just that: enable us to evaluate the expected payoffs of various actions at a
given information set using the knowledge that (a) this information set has been reached, and (b) players
must form some beliefs about which node at that information set could have been reached. As before,
this definition will continue to be Nash equilibrium — we are just eliminating Nash equilibria that involve
unreasonable behavior from the set of admissible solutions.

As a motivating example of how subgame perfection might not help us, consider the complete-information
game in Fig. 1 (p. 2). Player 1 gets to choose betweenU , M , or D. If he choosesD, the game ends. If he
chooses eitherU or M , player 2 gets to choose betweenL andR without knowing what action player 1
has taken except that it was notD.
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Figure 1: The SPE Example Game.

What are the Nash equilibria? By inspection of the strategicform, we see that there are two Nash
equilibria in pure strategies,hU; Li andhD; Ri. However, there is something unsatisfying about the second
one. In thehD; Ri equilibrium, player 2 seems to behave irrationally. If her information set is ever reached,
playing L strictly dominatesR. So player 1 should not be induced to chooseD by player 2’s incredible
threat to chooseL. However since player 2’s information set is off the equilibrium path, Nash equilibrium
does not evaluate the optimality of play there. Moreover, neither does SPE: player 2’s information set
is not a singleton. The game has only one subgame—the entire game itself—and as a result, all Nash
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equilibria, includinghD; Ri, are subgame perfect. We need an approach that evaluates theoptimality of
player 2’s response at her information set.

1 The Building Blocks

The approach we are going to take involves two requirements that, taken jointly, will allow us to evaluate
the optimality of behavior at any information set, including those that are not singletons. The first step is
to observe that in a dynamic setting, each player must have some beliefs about what has transpired in the
game at the time that it is their turn to choose an action. We shall evaluate the consequences of various
actions in terms of these beliefs. The second step is to note that such beliefs cannot be arbitrary—they
must be consistent with what the player thinks the strategies of the other players are. In other words,
all players must be best-responding to the beliefs about theother players’ strategies. In a sense, this is
exactly what Nash equilibrium does because we can interpretthe strategy profiles as sets of expectations
(beliefs) about behaviors: all players are then best-responding to what they believe the other players are
going to do, and these beliefs are predicated on the assumption that the other players are best-responding
to their beliefs. In subgame perfection, we required players to ask themselves what they would do in
every possible contingency. For contingencies that could not be reached in some strategy profile, players
performed a thought experiment by pretending that the contingency has arisen. In effect, they conditioned
their behavior on the knowledge of what had happened in the game so far. Conceptually, then, we are
not introducing anything new to our definition of rationality. We merely need the notational apparatus
that allows us to extend the implications of our concept of rationality to situations where the existing
approaches leave us without a way to apply it.

1.1 Sequential Rationality

Consider any dynamic game and an arbitrary information set for playeri , ht . When it is playeri ’s turn
to move, heknowsthat the game has reachedht (as a fact). If this information set is a singleton, then he
also knows precisely what all preceding actions for all players must have been. That is, he alsoknowsthe
history of the game leading toht . It is this knowledge that the definition of subgame perfection operates
on because it allows one to start a new game from that information set and apply the Nash equilibrium
requirements to it. If the information set is not a singleton, however, then this technique does not work.
Instead ofknowingthe history of the game that has led toht , playeri can only have some idea about how
his information set was reached; that is, he will have somebelief about the past actions of all players. For
now, we are not going to examine where these beliefs come from; we are just asserting that they must exist.
Thus, by analogue with subgame perfection, we are going to imagine that the contingency has arisen, but
unlike subgame perfection, we are not going to require that players know precisely how this has happened.

Going back to the game in Fig. 1 (p. 2), player 2 may not know whether player 1 has playedU or M

by the time her information set is reached, but she will have some belief about which of these two he
could have played. That is, the fact that her information sethas been reached forces player 2 to consider
it a fact that player 1 must have played eitherU or M because these are the only two actions that could
have possibly led to this contingency arising. As usual, we represent beliefs about events with probability
distributions. In this case, let� 2 Œ0; 1� be the probability that player 1 choseU , and1 � � be the
probability that he choseM . Think of this as the probability distribution over the nodes in her information
set: each node is the result of a different history of play, and so beliefs about these histories can be
represented simply by probabilities over the nodes. Since each node represents a unique way of reaching
the information set, the nodes are mutually exclusive. Since the information set can only be reached by
one of these histories, the nodes are also exhaustive. The fact that the nodes are exhaustive and mutually
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exclusive means that the probabilities associated with them must sum up to 1; that is, they must form a
probability distribution.

To define these beliefs generally, recall from our formal definition of extensive-form games thatX

denotes the set of nodes,H denotes the set of histories (information sets), andh.x/ 2 H is the information
set that contains nodex 2 X.

DEFINITION 1. A system of beliefsis a mapping,� W X ! Œ0; 1�, such that for allh 2 H , the following
holds:

P

x2h �.x/ D 1.

Intuitively, a system of beliefs� specifies the relative probabilities of being at each node for any in-
formation set. Obviously, if the information set is a singleton, h.x/ D fxg, then�.x/ D 1 (beliefs are
degenerate). Think of beliefs as probability distributions over the nodes in an information set; there must
be as many of these distributions as there are information sets.

These systems of beliefs allow us to define the analogue to a subgame, which we shall call acontinu-
ation game: every information set begins a new continuation game, which includes the remaining game
tree that emanates from that information set, and nothing else. That is, this is basically a subgame without
the requirement that it starts with a singleton informationset.

Just as we required strategies to be best responses in a subgame, we are now going to require that they
are best responses in a continuation game. Each action at a given information set is going to have different
consequences depending on which node in the information setthe play has actually reached. The system
of beliefs then allows us to compute the expected payoff of each action as a function of the probability
distribution over the nodes. For instance, if player 2 choosesL, she must expect that the outcome will be
.U; L/ with probability � (her belief that player 1 has chosenU ), and that the outcome will be.M; L/

with probability1�� (her belief that player 1 has chosenM ). Correspondingly, her expected payoff from
choosingL is:

U2.L/ D �u2.U; L/ C .1 � �/u2.M; L/ D �.1/ C .1 � �/.2/ D 2 � �

Analogously, since choosingR leads to the outcome.U; R/ with probability � and the outcome.M; R/

with probability1 � � under her beliefs, her expected payoff from choosingR is:

U2.R/ D �u2.U; R/ C .1 � �/u2.M; R/ D �.0/ C .1 � �/.1/ D 1 � �:

The best-response is, as usual, the action that yields the highest expected payoff. In this case, we note that
2 � � > 1 � � for all � 2 Œ0; 1�. This means that player 2’s best response at her informationset must beL
irrespective of her beliefs about player 1 choosingU or M . Since our definition of rationality requires best
responses, merely having beliefs in this game is sufficient to eliminate any solution that involves player
2 choosingR at her information set. This is so because the strategyR is strictly dominated: player 2 is
better off choosingL for any action that player 1 might take that reaches her information set. Most games,
of course, are not going to have such convenient strictly dominated strategies, and merely having beliefs
will not be sufficient to determine behavior in the continuation game.

The notion of beliefs allows us to define best responses for any continuation game as the strategies that
yield the highest expected payoff under the system of beliefs. Formally, letUi

�

�i.h/; ��i .h/
ˇ

ˇh; �
�

denote
playeri ’s expected payoff starting at information seth, with beliefs�.x/ about being at any nodex 2 h,
if he follows strategy�i .h/ while the other players follow��i .h/, where�.h/ denotes the restriction of
the strategies to the continuation game starting ath. We then define best responses as follows:

DEFINITION 2. A strategy�i is sequentially rational at information seth given a system of beliefs� if

Ui

�

�i .h/; ��i .h/
ˇ

ˇh; �
�

� Ui

�

Q�i.h/; ��i .h/
ˇ

ˇh; �
�

for all Q�i .h/ 2 †i .h/.

4



That is, a strategy is sequentially rational for a player at agiven information set if, given his beliefs, it
yields the highest expected utility in the continuation game starting at that information set while holding
the other players’ strategies fixed. This is easier to understand if you think about behavior strategies in
extensive form games. Recall that behavior strategies specify probability distributions over the nodes in
an information set, just like systems of beliefs do. The calculation of the expected payoff in a continuation
game is exactly the same as the computation of expected payoffs from a behavior strategy.

Sequential rationality at an information set implies that aplayer would not want to deviate from the
strategy at that information set. This means that if a strategy, �i , is sequentially rational at all information
sets where playeri has to move given his beliefs� and the strategies��i for the other players, then it
is playeri ’s best responseto ��i under�. In our example, player 2 has a unique sequentially rational
strategy,L.

Having specified a player’s best responses as a function of his beliefs, we must now ask where these
beliefs come from.

1.2 Consistent Beliefs

Let us pause for a second to think what it is that we are after here: a definition of rational behavior as a
best response to what a player thinks the other players are doing. Since this definition is going to apply
to all players, each of them must expect the others to be best-responding as well. In the present context,
this means that players must all expect everyone to be choosing sequentially rational strategies given their
beliefs. This means that each player’s beliefs about the history of play must be restricted to everyone using
sequentially rational strategies. In other words, all beliefs must be somehow derived from the optimal
strategies.

Consider the game in Fig. 1 (p. 2) and some strategy�1 for player 1 such that�1.U / > 0 or �1.M / > 0.
If player 2 thinks that player 1 is using�1 and her information set is reached, what belief must she hold
about which node she is at? That is, what is the likelihood that player 1 chose, sayU , conditional on him
having chosen eitherU or M and knowing that the probabilities with which he chooses them are�1.U /

and�1.M /, respectively? Since this involves conditional probabilities, it is perhaps not surprising that we
are going to use Bayes rule to compute them:

� D Pr.U jU or M / D
Pr.U /

Pr.U or M /
D

�1.U /

�1.U / C �1.M /
:

You can see now why we wanted one of these two probabilities for player 1 to be non-zero: Bayes rule is
undefined for zero-probability events (you cannot condition on stuff that cannot happen). Intuitively, since
there are only two histories consistent with player 2’s information set, the total probability of reaching that
set is the probability that one of them is chosen. Since histories are exhaustive and mutually exclusive, this
probability is the sum of the probabilities associated withthe different histories:�1.U / C �1.M /. Since
we are interested in the likelihood that one particular history has occurred,U in this case, we divide the
unconditional probability of that history occurring,�1.U /, by the total probability.

The notion that beliefs are consistent with the strategies when they are derived from them by Bayes rule
whenever possible is defined formally as follows:

DEFINITION 3. A system of beliefs� is consistentwith the strategies� if, for any information seth such
that Pr.hj�/ > 0 and for anyx 2 h,

�.x/ D
Pr.xj�/

Pr.hj�/
:
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To see that this is indeed Bayes rule that conditions on the fact that the information set is reached, write
the full formula:

Pr.xjh; �/ D
Pr.hjx; �/ Pr.xj�/

Pr.hj�/
;

and observe Pr.hjx; �/ D 1 because knowing that somex 2 h has been reached means thath has been
reached.

With these two concepts in mind, we can now revise our definition of rationality.

1.3 Weak Perfect Bayesian Equilibrium

The idea is simple: strategies must be sequentially rational given beliefs (best responses) and beliefs must
be consistent with the strategies (derived by Bayes rule whenever the strategies allow it). We shall call
a strategy profile� and a system of beliefs� an assessment.�; �/, and use this to define the solution
concept formally as follows,

DEFINITION 4. An assessment.�; �/ is aWeak Perfect Bayesian Equilibrium (WPBE) if � is sequen-
tially rational given�, and� is consistent with� .

It is important to realize that this definition places absolutely no restrictions on beliefs at information
sets that do not occur if the strategy profile� is followed; i.e., on information setsoff the path of play.
We only require that they aresomeprobability distributions but there is no consistency restriction onwhat
those distributions must be. This allows the analyst to assign arbitrary probability distributions (beliefs) at
such information sets. The definition still requires that the strategies are sequentially rational everywhere,
which includes these off-the-path sets with arbitrary beliefs.

As it turns out, for some games this definition is sufficient torule out implausible NE and SPE. Going
back to our example from Fig. 1 (p. 2), note that any WPBE requires that player 2 choosesL at her
information set no matter what beliefs she might have. Player 1’s best response to this is to chooseU ,
which leaves us with the assessment.hU; Li ; � D 1/ as the unique WPBE.

We can infer from this result that not all Nash equilibria areWPBE, and that not all SPE are WPBE. We
shall see soon that not all WPBE are SPE either. For now, we canstate an immediate result that follows
directly from the definition of WPBE:

PROPOSITION1. Every WPBE is a Nash equilibrium, but not every Nash equilibrium is a WPBE. ✷

Proof. Consider an assessment.�; �/ that is WPBE. Since the strategies are sequentially rational at all
information sets, they must be sequentially rational at allinformation sets that are reached with positive
probability under� (and� is derived by Bayes rule at all such sets). This means that they are best responses
to each other, and so� is a Nash equilibrium.

The second part of the claim—that there are Nash equilibria that are not WPBE—is established with
the example above. In particular, Nash equilibrium allows strictly dominated strategies to be played at
information sets that do not occur under� , but WPBE will not allow it. �

To see how one would solve for WPBE in slightly more involved situations, consider a modification of
our example: the game shown in Fig. 2 (p. 7). One key difference is that now player 2 no longer has a
strictly dominant strategy at her information set: her bestresponse depends on what player 1 does. The
other differences involve player 1’s payoffs.
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Figure 2: The WPBE Example Game.

Let �i denote a strategy for playeri and start with player 2, whose expected payoffs are:

U2.L/ D �.1/ C .1 � �/.1/ D 1

U2.R/ D �.0/ C .1 � �/.2/ D 2 � 2�;

which implies that her sequentially rational strategy isL whenever1 � 2 � 2� , � � 1=2, andR

otherwise. We can write her best response as:

BR2.�/ D

8

ˆ

<

ˆ

:

�2.L/ D 1 if � > 1=2

�2.L/ D 0 if � < 1=2

�2.L/ 2 Œ0; 1� if � D 1=2:

Turning now to player 1, observe thatU strictly dominatesD. This means that no matter what player 1
believes at the outset of the game, choosingD is never sequentially rational. Therefore,�1.D/ D 0 in
any WPBE, which in turn means that�1.U / C �1.M / D 1 in any WPBE. This tells us that player 2’s
information set must occur on the path of play in any WPBE, andso Bayes rule will pin down her beliefs
there. Since her best response involves a critical value of�, let us examine all possibilities:

� Suppose that� > 1=2, in which case player 2 must chooseL. Player 1’s best response is to choose
M . But this implies that� D 0 because this is the only belief consistent with his strategy, a
contradiction. Therefore, there is no such WPBE.

� Suppose that� < 1=2, in which case player 2 must chooseR. Player 1’s best response is to choose
U . But this implies that� D 1 because this is the only belief consistent with his strategy, a contra-
diction. Therefore, there is no such WPBE.

� Suppose that� D 1=2, in which case player 2 is indifferent, and so any response issequentially
rational. For this belief to be consistent with player 1’s strategy, it must be the case that

� D
�1.U /

�1.U / C �1.M /
D �1.U / D

1

2
;

where we used the fact that�1.U / C �1.M / D 1 in any WPBE. Thus, we conclude that player 1
must be mixing in this equilibrium with�1.U / D �1.M / D 1=2. He would only do so if bothU
andM are sequentially rational; i.e., if he is indifferent amongthem. Since

U1.U / D �2.L/.2/ C .1 � �2.L//.1/ D 1 C �2.L/

U1.M / D �2.L/.3/ C .1 � �2.L//.0/ D 3�2.L/;

this can only happen when�2.L/ D 1=2. This yields the WPBE.
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We conclude that this game has a unique WPBE:
�˝

��

1 .U / D ��

1 .M / D 1=2; ��

2 .L/ D 1=2

˛

; � D 1=2

�

.
Generally, when all information sets occur with positive probability under the equilibrium strategy pro-
file, as it is the case here, we will omit the system of belief when writing the solutions because these are
uniquely defined by Bayes rule. For instance, in this examplewe would say that the game has a unique
WPBE, in which player 1 chooses betweenU andM with equal probabilities, and player 2 chooses be-
tweenL andR with equal probabilities. Since all information sets occurunder��, all Nash equilibria
must also be SPE and WPBE. A quick check of the strategic form reveals that this is indeed the case: the
unique MSNE specifies the strategies we just found.

Let us now make the game a bit more interesting so thatD is no longer strictly dominated, as shown in
Fig. 3 (p. 8). We can now no longer assert that player 1 cannot play D in WPBE, and as a result cannot
assume that� will be defined by Bayes rule.
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2; 1
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0; 2

L

3; 1
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L R

U 2,1 -1,0

M 3,1 0,2

D 1,3 1,3

Figure 3: The Interesting WPBE Example Game.

Since player 2’s payoffs are the same as in Fig. 2 (p. 7), her sequentially rational strategies remain the
same. We shall examine the possible assessments by looking at the various beliefs she might hold:

� Suppose that� > 1=2, in which case player 2 must chooseL. Player 1’s best response is to choose
M , which puts player 2’s information set on the path of play. The only consistent belief is� D 0, a
contradiction. There is no WPBE with beliefs� > 1=2.

� Suppose that� < 1=2, in which case player 2 must chooseR. Player 1’s best response is to choose
D, which leaves player 2’s information set off the path of play. Bayes rule is undefined, and WPBE
places no restrictions on her beliefs. In particular, we could pick any probability distribution that
could rationalize her response. Thus, there is a continuum of WPBE where the assessments take the
form .hD; Ri ; � < 1=2/.

� Suppose that� D 1=2, in which case player 2 can mix. Player 1’s expected payoffs are

U1.U / D �2.L/.2/ C .1 � �2.L//.�1/ D 3�2.L/ � 1

U1.M / D �2.L/.3/ C .1 � �2.L//.0/ D 3�2.L/:

and soM strictly dominatesU ; i.e., U is never sequentially rational. Thus,�1.U / D 0 in any
WPBE, which implies that if�1.M / > 0 in WPBE, Bayes rule will pin down the only consistent
belief to be� D 0, and player 2 would not be indifferent. We conclude that�1.M / D 0 must obtain
as well in any such WPBE, which in turn means that player 2’s information set must be off the path
of play, and we can assign whatever assessment we need to rationalize her strategy. Since player 1
must be willing to chooseD overM , it must be thatU1.D/ � U1.M / , �2.L/ � 1=3. Thus, there
is a continuum of WPBE where the assessments take the form.hD; �2.L/ � 1=3i ; � D 1=2/.

This game has infinitely many WPBE characterized by different off-the-path beliefs we assign for player
2 (and, in the second set of solutions, by her different mixing probabilities). All these WPBE are payoff
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equivalent (the players obtain.1; 3/), and observationally equivalent as well (the game ends with player 1
choosingD). In that sense, the multiplicity of WPBE is not particularly troubling. On the other hand, since
U is strictly dominated byM for player 1, it seems quite odd that any beliefs other than� D 0 should be
admissible. If we were to eliminate these, the sole surviving assessment would be.hD; Ri ; � D 0/. We
shall soon see this stronger consistency requirement in action.

How do these WBNE relate to Nash equilibria (and SPE, since all Nash equilibria in this game are
subgame-perfect)? The strategic form in Fig. 3 (p. 8) shows thatM strictly dominatesU , so�1.U / D 0

in any NE. Moreover, if�1.M / > 0, thenR strictly dominatesL for player 2. But if player 2 choosesR,
then player 1 would chooseD. Therefore,�1.M / D 0 in any NE as well. We conclude that player 1 must
play D, which makes player 2 indifferent. She can mix with any probability as long asU1.D/ D 1 �

U1.M / D 3�2.L/, or �2.L/ � 1=3. Thus, there is a continuum of MSNE:hD; �2.L/ � 1=3i. All of them
are subgame-perfect. All WPBE that we found are in this set ofMSNE as well.

We saw earlier that not all SPE are WPBE (indeed, this is how weeliminated the unreasonable solution
in the game from Fig. 1 (p. 2)). We now show that not all WPBE areSPE either; that is, there exist WPBE
that are not subgame-perfect. We shall do this by way of the example game in Fig. 4 (p. 9).

BT

2,0,0

1

DU

2

3

R

3,3,3

L

1,2,1

�

R

0,1,1

L

0,1,2

1��

Figure 4: The WPBE* SPE Game.

The subgame that starts with player 2’s move has a unique Nashequilibrium, in which she chooses
U and player 3 choosesR. With that expectations, player 1 has a unique best responseto chooseB.
Therefore, this game has a unique SPE:hB; U; Ri.

Consider now sequentially rational strategies for player 3. His expected payoffs are:

U3.L/ D �.1/ C .1 � �/.2/ D 2 � �

U3.R/ D �.3/ C .1 � �/.1/ D 1 C 2�;

which means that his best response is:

BR3.�/ D

8

ˆ

<

ˆ

:

�3.L/ D 1 if � < 1=3

�3.L/ D 0 if � > 1=3

�3.L/ 2 Œ0; 1� if � D 1=3:

Since player 2’s payoffs are:

U2.U / D �3.L/.2/ C .1 � �3.L//.3/ D 3 � �3.L/

U2.D/ D �3.L/.1/ C .1 � �3.L//.1/ D 1;
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choosingU strictly dominates choosingD. Her best response in any WPBE must beU , so�2.U / D 1.
This makes it easy to compute player 1’s expected payoff fromchoosingB as:

U1.B/ D �3.L/.1/ C .1 � �3.L//.3/ D 3 � 2�3.L/;

so his best response is:

BR1.�2.U / D 1; �3/ D

8

ˆ

<

ˆ

:

�1.T / D 1 if �3.L/ > 1=2

�1.T / D 0 if �3.L/ < 1=2

�1.T / 2 Œ0; 1� if �3.L/ D 1=2:

Suppose that�1.B/ > 0, which puts player 2’s information set on the path of play. Inthis case,�2.U / D 1

pins down� D 1, so player 3 must chooseR, to which player 1’s best response isB. Therefore, the
assessment.hB; U; Ri ; � D 1/ is WPBE. Not surprisingly, when all information sets are on the path of
play, there is no difference between SPE and WPBE (and Nash).

Suppose now that�.B/ D 0, which leaves player 2’s information set off the path of play. This, in turn,
puts player 3’s information set off the path of play as well, and so Bayes rule is undefined.1 We are free to
assign whatever beliefs we want to rationalize player 3’s strategy. Since player 2 has a unique sequentially
rational strategy inU , and we wish to ensure that player 1 choosesT , getting player 3 to chooseL will be
sufficient. We can get this by assigning some� < 1=3. Therefore, any assessment.hT; U; Li ; � < 1=3/ is
WPBE. None of these are subgame perfect.2

Why did this happen? Subgame perfection places strong restrictions on strategies in all subgames. In
this instance, it requires player 3 to best-respond in the subgame that starts with player 2’s move. In effect,
this forces player 3 to behave as if player 2’s information set has been reached. Since player 2 has a
strictly dominant strategy to chooseU , this restricts player 3 to choosingR. WPBE, on the other hand,
does not place any restrictions on information sets off the path of play. It only requires that players choose
strategies that are sequentially rational givensomebeliefs. In this instance, this means that player 3 does
not have to take into account the fact thatU is strictly dominant for player 2, which allows him to maintain
the (strange) belief that she playedD probability that exceeds2=3. In fact, there is a WPBE in which he
believes that she playsD with certainty! This is clearly undesirable: since player 2has a strictly dominant
strategy, any reasonable belief for player 2 should require� D 1, which would make the WPBE subgame
perfect. But no such restriction exists in the current definition.

Before moving on, note that our examples have collectively established the following result:

PROPOSITION2. Not every WPBE is a SPE, and not every SPE is a WPBE in games of imperfect infor-
mation. ✷

As the examples suggest, the discrepancies arise when information sets that are not singletons are left
off the path of play. This suggests that games of perfect information might not have this problem, as indeed
turns out to be the case.

PROPOSITION3. Every WPBE is a SPE in games of perfect information. ✷

1The formula is:

� D
�1.B/�2.U /

�1.B/�2.U / C �1.B/�2.D/
;

and it is clearly undefined when�1.B/ D 0. Make sure you understand that you cannot just divide both the numerator and the
denominator by�1.B/ to cancel that term.

2There is also a continuum of assessments where player 3 mixes, which are also not subgame perfect but WPBE. I leave these
to you as an exercise.
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Proof. WPBE requires that strategies are sequentially rational givensomebelief at each information set.
Since each information set is a singleton in games of perfectinformation, the game admits only a single
belief system. But then sequential rationality guaranteesthat the strategies are Nash in all subgames; i.e.,
that they are subgame perfect. �

The intuition for this result is that if all information setsare singletons, then there is only one belief
that we must assign for each of them irrespective of whether they occur on or off the path of play: the
probability of being at the single node in an information setmust be 1. Sequential rationality then boils
down to our standard Nash best response for the subgame (and continuation game) that starts at that node,
which in turn ensures that the sequentially rational strategies are subgame perfect.

The possibility that WPBE is not subgame perfect is troubling. It is especially so when you recognize
why this is the case: by assigning arbitrary beliefs for off-the-path information sets, we are permitting
players to threaten each other with implausible beliefs. This means that we must make the solution concept
more demanding.

2 Perfect Bayesian Equilibrium

If our only goal were to ensure that all WPBE are subgame perfect, then there is a straightforward strength-
ening of the equilibrium definition that would satisfy this:require that the strategies are WPBE in all sub-
games. This will force recalculation of beliefs from the start of each subgame irrespective of whether it is
reached by the strategies, and avoid problems of the sort we saw in Fig. 4 (p. 9).

DEFINITION 5. An assessment.�; �/ is a Perfect Bayesian Equilibrium (PBE) if it is a WPBE in all
subgames.

Since this requirement ensures that PBE are subgame perfectand because the original example from
Fig. 1 (p. 2) shows that there are SPE that are not PBE, the following is immediate:

PROPOSITION4. Every PBE is a SPE but not every SPE is a PBE. ✷

In practice, applied work with games of incomplete information almost always uses PBE.3 Let us look
at several example games.

2.1 Myerson’s Card Game

Recall the card that we have now seen a couple of times, reproduced here in Fig. 5 (p. 12). Previously, we
solved this by converting it to strategic form and finding theNash equilibrium. Let us now find the PBE.

We start with player 2’s sequentially rational strategy. Her expected payoffs are:

U2.m/ D �.2/ C .1 � �/.�2/ D 4� � 2

U2.p/ D �.�1/ C .1 � �/.�1/ D �1;

so her best response is

BR2.�/ D

8

ˆ

<

ˆ

:

�2.m/ D 1 if � > 1=4

�2.m/ D 0 if � < 1=4

�2.m/ 2 Œ0; 1� if � D 1=4:

3The definition of PBE in Fudenberg and Tirole is actually a bitmore demanding than the one I have given here, but this one
is sufficient for this course.
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Figure 5: Myerson’s Card Game.

Player 2’s belief is defined as

� D
.1=2/�1.R/

.1=2/�1.R/ C .1=2/�1.r/
D

�1.R/

�1.R/ C �1.r/

whenever�1.R/ > 0 or �1.r/ > 0. It is undefined, of course, if both are zero. Since player 1’spayoffs
are:

U1.F / D �1 U1.R/ D 1 � 3�2.m/

U1.f / D 1 U1.r/ D 1 C �2.m/;

his sequentially rational strategies are:

BR1.�2jblack/ D

8

ˆ

<

ˆ

:

�1.R/ D 1 if �2.m/ < 2=3

�1.R/ D 0 if �2.m/ > 2=3

�1.R/ 2 Œ0; 1� if �2.m/ D 2=3;

and

BR1.�2jred/ D

(

�1.r/ D 1 if �2.m/ > 0

�1.r/ 2 Œ0; 1� if �2.m/ D 0:

We now look for PBE using the critical value of player 2’s posterior beliefs:

� Suppose that� > 1=4, so�2.m/ D 1. Player 1’s best responses are�1.R/ D 0 and�1.r/ D 1,
which imply that� D 0, a contradiction. There is no such PBE.

� Suppose that� < 1=4, so�2.m/ D 0. Player 1’s best response if his card is black is�1.R/ D 1.
There are two possibilities if his card is red:

– Suppose that� 2 .0; 1=4/, so his best response is�1.r/ D 1 as well. Then� D 1=2, a
contradiction. There is no such PBE.

– Suppose that� D 0, in which case� D 1=.1 C �1.r// > 0, a contradiction. There is no such
PBE.

� Suppose that� D 1=4, so player 2 is indifferent and can mix. There are two possibilities:

12



– Suppose that�2.m/ > 0, so that player 1’s best response when the card is red is�1.r/ D 1.
Bayes rule then requires that

� D
�1.R/

�1.R/ C 1
D

1

4
) �1.R/ D

1

3
;

which implies that player 1 must be willing to mix when the card is black. He would only do
so when�2.m/ D 2=3. The assessment.h.�1.R/ D 1=3; �1.r/ D 1/ ; �2.m/ D 2=3i ; � D 1=4/

is PBE.

– Suppose that�2.m/ D 0, so that player 1 is indifferent when the card is red, so that�1.r/ 2

Œ0; 1�. Since this also implies that�1.R/ D 1, Bayes rule requires that

� D
1

1 C �1.r/
D

1

4
) �1.r/ D 3;

which is clearly impossible. There is no such PBE.

We conclude that this game has a unique PBE, in which player 1 always raises when the card is red, and
bluffs by raising with probability1=3 when the card is black. Player 2 meets with probability2=3. In this
PBE, when player 2 observes that player 1 has raised, her updated belief that the card is black is� D 1=4,
which is a reduction from her prior belief of1=2. This, of course, is the MSNE we originally found.
Since player 2’s information set is reached with positive probability under these strategies, it should not be
surprising that this MSNE is a PBE as well (and a SPE).

You might wonder if it is possible to construct a PBE exploiting the idea that player 2’s information
set could be left off the path of play and then assigning some arbitrary beliefs for her to act upon. Since
all PBE are Nash equilibria and the game has a unique MSNE, theanswer is negative. But let’s try it
anyway. To leave player 2’s information set off the path of play, it is necessary that�1.R/ D �1.r/ D 0

in that putative PBE. To rationalize player 1’s choice when the card is red,�1.r/ D 0, it is necessary that
�2.m/ D 0, but in that case�1.R/ D 1, a contradiction. We cannot construct a PBE with strategiesthat
do not reach player 2’s information set.

Observe now that you can think of this situation as a simple signaling game. Player 1’s type is whether
he holds a winning (red) or losing (black) card, and the common prior is that the two types are equally
likely. Since player 1 can condition his choice on the card heholds, he has type-contingent strategies that
can potentially reveal something to player 2. That is, afterobserving player 1’s choice, player 2 can make
inferences about his type. She begins the game thinking thatthere is a 50-50 chance that he holds the
winning card, but after observing him raising, she updates to believe that there is a 75-25 chance that this
is so. These are the odds that leave her indifferent between meeting and passing, which rationalizes her
willingness to mix. Her strategy, in turn, rationalizes player 1’s willingness to bluff when he holds the
losing card (he always raises with a winning card). Thus, player 1 raising is a noisy signal that he has a
winning card.

The signal works because player 1 does not always raise when he has a losing card. If he were to do that,
�1.R/ D �1.r/ D 1, then player 2 would not learn anything from observing him raise, so her posterior
belief will remain the same as her prior:� D 1=2. But in that case, she will meet for sure,�2.m/ D 1,
which induces an unacceptable outcome for the player with the losing card.

2.2 Classifying PBE by Strategy Types

The discussion of transmission of information by strategies leads to a useful classification of PBE in
incomplete information games depending on how much information they reveal about the privately known
types of the players:
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� If all types of a player choose their actions with the same probabilities, then observing any particular
action conveys no new information about their types, and theposterior beliefs remain the same
as the priors. These strategies are calledpooling because all types pool on the same probability
distribution.

� If all types of a player choose different actions with certainty, then observing any particular action
fully reveals the information about their type, and the posterior beliefs assign probability 1 to that
type irrespective of the priors. This is why these strategies are calledseparating: the actions they
prescribe “separate” the types fully.

� If the types of a player choose different actions with different non-degenerate probabilities, then
observing any particular action will conveysomeinformation about their types, which will lead to
the posterior beliefs getting updated but without causing them to degenerate. This is why these
strategies are calledsemi-separating(or semi-pooling, or hybrid): the actions they prescribe reveal
something about their types but the other players remain uncertain. The PBE we found in Myerson’s
Card Game involves a strategy for player 1 that is of this type.

In games with one-sided incomplete information (where one player is fully informed but the other is
not), the type of strategy the informed player uses in PBE is often used to label the PBE itself. Thus,
in Myerson’s Card Game, we would normally refer to the PBE as semi-separating. This classification
of strategies (and PBE) sometimes makes it easier to organize one’s analysis, as the following example
shows.

2.3 A Two-Period Reputation Game

There are two firms,i 2 f1; 2g, in the market, and their interaction unfolds over two periods. In the first
period, firm 1 can accommodate,A, or fight (by cutting prices),F , and in the second period, firm 2 chooses
whether to stay,S , or exit, X , and after that firm 1 chooses whether to cut prices or not. Allchoices are
observable. If firm 1 accommodates and both firms are in the market, it is a duopoly, and each firmi
receives a payoffdi > 0. If firm 2 exits, then it receives a payoff of 0, and if firm 1 doesnothing else, it
receives the monopoly price,m1 > d1. If firm 1 fights, firm 2 receivesw2 < 0. Firm 1’s payoff depends
on whether it prefers a monopoly to cutting prices. The type that prefers monopoly has a price-cutting
payoff of w1 < 0, whereas the type that prefers to cut prices has a price-cutting payoff Ow1 > m1. For
simplicity, we shall refer to the type that prefers monopolyas “sane” and the type that prefers to cut-prices
as “crazy”. This type is privately known to firm 1, and firm 2’s (common knowledge prior) belief that firm
1 is sane isp 2 .0; 1/. The total payoff for each firm is the discounted sum of its per-period payoffs. The
firms have a common discount factorı 2 .0; 1/.

Since all PBE are subgame perfect, let us simplify the game a bit by looking at the final information sets
for firm 1 in the second period. Since the firm knows its own typeand can observe all prior actions, these
information sets are singletons. This means that we can derive the sequentially rational (subgame perfect)
strategies by backward induction. Since there is no future action by firm 2, firm 1’s behavior at all its final
information sets simply depends on its type: the sane type does nothing, and the crazy type cuts prices. If
firm 2 exits, the payoffs are.m1; 0/ if firm 1 is sane, and. Ow1; 0/ if it is crazy. If firm 2 stays, the payoffs
are.d1; d2/ if firm 1 is sane, and. Ow1; w2/ if it is crazy. We can now represent the resulting situation with
the extensive-form game in Fig. 6 (p. 15).

Let �1 denote firm 2’s belief that firm 1 is sane after being fought in the first period, and let�2 denote
that belief after being accommodated in the first period. We begin by deriving firm 2’s sequentially rational
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Figure 6: The Reputation Game.

strategies at each of her two information sets. Firm 2’s expected payoffs are:

U2.S jF / D �1d2 C .1 � �1/w2 U2.S jA/ D �2d2 C .1 � �2/w2

U2.X jF / D 0 U2.X jA/ D 0:

These define a critical threshold value,

�� D
�w2

d2 � w2
2 .0; 1/;

where the fact that�� is a valid probability follows fromw2 < 0 < d2. The sequentially rational strategies
at both information sets are the same:

BR2.�/ D

8

ˆ

<

ˆ

:

�2.S j�/ D 1 if � > ��

�2.S j�/ D 0 if � < ��

�2.S j�/ 2 Œ0; 1� if � D ��:

That is, firm 2 will stay only if it sufficiently convinced thatfirm 1 is sane.
Turning now to firm 1, observe thatF strictly dominatesA for the crazy type, which means that

�1.F jcrazy/ D 1 in any PBE. This ensures that the corresponding informationset must be on the path of
play in any PBE, which means that�1 must be defined by Bayes rule as:

�1 D
p�1.F jsane/

p�1.F jsane/ C .1 � p/.1/
;

whereas�2 might or might not be on the path of play, depending on what thesane type does. If
�1.Ajsane/ > 0, then Bayes rule requires that it be:

�2 D
p�1.Ajsane/

p�1.Ajsane/ C .1 � p/.0/
D 1:
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The expected payoffs for the sane firm 1 are:

U1.F jsane/ D w1 C ım1 C ı�2.S j�1/.d1 � m1/

U1.Ajsane/ D d1 C ım1 C ı�2.S j�2/.d1 � m1/:

This defines a condition,

�2.S j�2/ � �2.S j�1/ �
d1 � w1

ı.m1 � d1/
� � > 0; (1)

which we can use to specify the sequentially rational strategy as follows:

BRsaneD

8

ˆ

<

ˆ

:

�1.F jsane/ D 1 if �2.S j�2/ � �2.S j�1/ > �

�1.F jsane/ D 0 if �2.S j�2/ � �2.S j�1/ < �

�1.F jsane/ 2 Œ0; 1� if �2.S j�2/ � �2.S j�1/ D �:

The left-hand side of (1) is the difference in firm 2’s probability of staying following accommodation,
�2.S j�2/ and a fight,�2.S j�1/. The sane firm 1 will fight in the first period only if this difference is
sufficiently large; that is, it will fight if firm 2 is much more likely to stay after being accommodated than
after being fought. Another way of saying this is that the sane firm 1 will fight in period 1 only if this
makes firm 2’s exit quite a bit more likely in the second period. This it can achieve by increasing firm 2’s
belief that he is the crazy type (which always fights); that is, by establishing a reputation for toughness (or,
better, by bluffing).4

Observe now that if� � 1, then (1) can never be satisfied. This means that the sane firm 1must
accommodate in the first period:�1.F jsane/ D 0. Since the crazy type always fights, both of firm 2’s
information sets are on the path of play:�1 D 0 < �� < 1 D �2. This means that firm 2 will exit after
observing a fight,�2.S j�1/ D 0, but stay after being accommodated,�2.S�2/ D 1. Since1 � � by
supposition, the sane type accommodates. Therefore, if� � 1, the game has a unique PBE, in which the
sane type accommodates in both periods, the crazy type fightsin both periods, and firm 2 stays whenever
accommodated, and exits otherwise. Since the strategies fully reveal the type of firm 1, this is aseparating
PBE.

Assume now that� < 1, so it is possible to satisfy (1). Since the crazy type alwaysfights, let us find
the PBE using the sane type’s strategy:

� Pooling: �1.F jsane/ D 1, which implies that�1 D p and�2 is undefined. There are now two
possibilities to consider:

– If p > ��, then�2.S j�1/ D 1, which means that�2.S j�2/ � 1 < � irrespective of how�2

is defined, and thus�1.F jsane/ D 0, a contradiction. There is no such PBE.

– If p � ��, then�2.S j�1/ D 0, and all that is necessary to rationalize the sane type’s strategy
is �2.S j�2/ > �. Any �2 > �� will accomplish this (causing firm 2 to stay after accommo-
dation), which means that there is a continuum of PBE in whichboth types of firm 1 fight in
the first period, and firm 2 exists if, and only if, it is accommodated. Intuitively, this strategy
works because firm 2 is already quite pessimistic: her prior belief that firm 1 is sane is very

4I don’t like this way of thinking about reputation, for reasons we discussed in class. Briefly, this method conceptualizes
reputation as someone’s belief that you are a type that you are not (one, perhaps, that you would like to be), rather than their
belief that you are the type that you are. In this model, this conceptualization means that the sane type wants firm 2 to believe that
it is the crazy type, rather than that it is the sane type. To me, this sounds like bluffing about being someone you are not rather
than establishing a reputation for who you are.
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low, p � ��. With such a belief, staying is too risky, so firm 2 exits even though there is
a positive probability that firm 1 was bluffing and that it is, in fact, sane, and so would ac-
commodate in the second period if firm 2 stayed. All these PBE are both observationally and
payoff equivalent: on the path of play firm 1 fights, and firm 2 exits. Since they only differ in
the off-the-path beliefs that support them, they aregenerically unique, and so we do not have
a multiple equilibria problem.

� Separating: �1.F jsane/ D 0, which implies that�1 D 0 and�2 D 1. This implies that�2.S j�2/�

�2.S j�1/ D 1 > �, which is satisfied. But then�1.F jsane/ D 1, a contradiction. There is no such
PBE. (In other words,� � 1, which we found above to be sufficient for a separating PBE to exist,
turns out to be necessary as well.)

� Semi-separating: �1.F jsane/ 2 .0; 1/, which implies�2 D 1, and thus�2.S j�2/ D 1, so firm
2 must stay after accommodation. Since the sane type must be willing to mix, this now means that
�2.S j�1/ D 1 � � 2 .0; 1/, and so firm 2 must be mixing after a fight. This requires that�1 D ��,
or, using the definition of�1, that

p�1.F jsane/

p�1.F jsane/ C 1 � p
D �� ) �1.F jsane/ D

.1 � p/��

p.1 � ��/
:

Since this expression is clearly positive, all that is required for it to be a valid probability is that it is
less than one:

.1 � p/��

p.1 � ��/
< 1 , p > ��:

Thus, we conclude that the game has a semi-seprating PBE but only whenp > ��.

We have thus found three solutions: a unique separating PBE when� � 1 that does not depend on the
priors, and, when� < 1, a generically unique pooling PBE whenp � ��, and a unique semi-separating
PBE whenp > ��. Observe that these PBE are mutually exclusive (if a configuration of the exogenous
parameters is associated with one of them, then it is not associated with another) and exhaustive (all
possible configurations of the exogenous parameters are associated with an equilibrium). This is great
for predictions since we do not have to deal with indeterminacies that arise when the model produces
more than one solution for some specification of the exogenous variables. This, however, is a result of
the restrictive assumption that the crazy type always fights, which implies that (a) fighting is never a zero-
probability event, and (b) accommodation fully reveals firm1’s type. In more common applied models,
the assumptions will not be that stark (and convenient), andso the analysis will become more involved, as
the next example shows.

2.4 Spence’s Education Game

Now that you are in graduate school, you probably have a good reason to think education is important.5

Although I firmly believe that education has intrinsic value, it would be stupid to deny that it also has
economic, or instrumental, value as well. As a matter of fact, I am willing to bet that the majority of
students go to college not for the sake of knowledge and bettering themselves, but because they think

5Or maybe not. I went to graduate school because I really did not want to work a regular job from 8:00a to 5:00p, did not
want to be paid for writing programs (my B.S. is in Computer Science) even if meant making over 100k, and did not want to have
a boss telling me what to do. I had no training in Political Science whatsoever, and so (naturally) decided it would be worth a try.
Here I am now, several years later, working a job from 7:00a to11:00p including weekends, making significantly less money, and
although without a boss, having to deal with a huge government bureaucracy. Was this economically stupid? Sure. Am I happy?
You betcha. Where else do you get paid to read books, think great thoughts, and corrupt the youth?
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that without the skills, or at least the little piece of paperthey get at the end of four years, they will not
have good chances of finding a decent job. The idea is that potential employers do not know you, and
will therefore look for some signals about your potential tobe a productive worker. A university diploma,
acquired after meeting rigorous formal requirements, is such a signal and may tell the employer that you
are intelligent and well-trained. Employers will not only be more willing to hire such a person, but will
probably pay premium to get him/her. According to this view,instead of making people smart, education
exists to help smart people prove that they are smart by forcing the stupid ones to drop out.6

The following simple model is based on Spence’s (1973) seminal contribution that preceded the litera-
ture on signaling games and even the definition of equilibrium concepts like PBE. There are two types of
workers, a high ability (H) and a low ability (L) type. The worker knows his own ability but the potential
employer does not. The employer thinks that the prior probability of the candidate having high ability is
p 2 .0; 1/, and this belief is common knowledge (perhaps there is a study about average productivity in the
industry). The worker chooses a level of educatione � 0 before applying for a job. The cost of obtaining
an educational levele is e for the low ability worker, ande=2 for the high ability worker. (In other words
high ability workers find education much less costly.)

The only thing the employer observes is the level of education. The employer offers a wagew.e/

as a function of the educational level, and the employers’ payoff is 2 � w.e/ if the worker turns out to
have high ability, and1 � w.e/ if he turns out to have low ability. Since the job market is competitive,
the employer must offer a competitive wage such that the expected profit is zero. Let�.e/ denote the
employer’s posterior belief that the worker has high ability given that he observede level of education.
The employer’s expected payoff is

UE .e/ D �.e/.2 � w.e// C .1 � �.e//.1 � w.e// D 1 � w.e/ C �.e/:

Intuitively, the wage starts at the compensation for the lowability worker,1 � w.e/, and increases in the
probability that the worker is high ability,�.e/. Since in a competitive environment the expected payoff
for the employer is zero, it follows that

w.e/ D 1 C �.e/:

The worker’s payoffs are:

UH .e/ D w.e/ �
e

2
D 1 C �.e/ �

e

2
if he is theH typeI

UL.e/ D w.e/ � e D 1 C �.e/ � e if he is theL type:

Let �H .e/ be the probability that theH type chooses the level of educatione, and let�L.e/ be the
corresponding probability for theL type. We can write the employer’s posterior belief (the probability
that the worker is theH type conditional on an observed level of educatione) as:

�.e/ D
�H .e/p

�H .e/p C �L.e/.1 � p/
:

With just two types for the worker, there is noa priori reason to expect that any equilibrium would involve
more than two different levels of education. LeteH denote the level chosen by theH type, andeL denote
the level for theL type. We now wish to find the set of PBE.

6Here, perhaps, is one reason why Universities that are generally regarded better academically tend to attract smart students,
who then go on to earn big bucks. They make the screening process more difficult, and so the ones that survive it are truly
exceptional. . . Or maybe not if your grandfather went to saidelite school and the stadium is named after your family.
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Separating Equilibria. In these PBE,eH ¤ eL. From Bayes’ rule,�.eH / D 1 and�.eL/ D 0, and
so we havew.eH / D 2 andw.eL/ D 1. With this wage, theL worker’s payoff isUL.eL/ D 1 � eL,
so he will choosee�

L
D 0 because anything else would make him worse off. What about the H worker?

His payoff isUH .eH / D 2 � eH =2. Observe now that this should be at least as good as mimickingL’s
behavior: if he does that and choosese D 0, then the employer will conclude that he is the low-ability
type and offer him the wagew.eL/, so his payoff would beUH .0/ D 1. His payoff fromeH > 0 must be
at least as good,

UH .e�

H / � UH .e�

L/ , 2 � e�

H =2 � 1 , e�

H � 2:

We conclude thatH ’s equilibrium level of education cannot be too high or else he would just get no
education and stick with the low wage. This ofe D 2 as obtaining a Master’s Degree: going for a Ph.D.
will just hurt your bottom line.

On the other hand,H ’s education level cannot be too low or else theL type will try to mimic it. To
see that, observe that in a separating equilibrium, the low type also must have no incentive to imitate the
behavior of the high type. This means that

UL.e�

L/ � UL.e�

H / , 1 � 2 � e�

H , e�

H � 1:

We conclude thatH ’s equilibrium level of education cannot be too low or else helow-ability worker would
be able to acquire it if doing so would convince the employer that he has high ability. For the educational
level to be separating, it must be so high thatL cannot profit from imitatingH ’s behavior. Think ofe D 1

as obtaining a Bachelor’s Degree: if you do not at least get that, then your education cannot possibly reveal
to your employer that you are the high ability type.

We conclude thate�

H
2 Œ1; 2� ande�

L
D 0. Although we have pinned downL’s type, we have not

actually done so for theH type, we have just narrowed the possibilities. In fact, anye�

H
2 Œ1; 2� can be

sustained in equilibrium with appropriate beliefs.
To see what I mean, picks somee�

H
in that range and note that the employer only expects to seee�

H

or no education at all in equilibrium, anye … fe�

H
; 0g is off the equilibrium path of play. We cannot use

Bayes rule to ensure consistency of beliefs after such educational levels:�.e/ is undefined. This means
that we can assign any beliefs we want. Consider the following beliefs:

�.e/ D

(

0 if e < e�

H

1 if e � eH

These are the simplest beliefs (on and off the path) that willsustain the choice ofe�

H in equilibrium.
Deviating to a higher level does not benefit the high-abilityworker because he’s already getting the highest
wage and any additional education represents an unnecessary cost. Obviously, since the low-ability type
cannot profit frome�

H , he certainly cannot profit from a higher level either. If, onthe other hand, the
high-ability type were to attempt a lower level of education, the employer will infer that he is theL type
and offer the minimum wage. This leaves him strictly worse off, so he has no incentive to deviate. Clearly,
any deviation to a positive level of education that still leaves the employer convinced that he is theL type
cannot be profitable for the low-ability type either.

We conclude that anye�

H
2 Œ1; 2� can be sustained in PBE using the belief system specified above.7

Although the solution is indeterminate in the sense that it does not predict the precise level, it does give us

7Other beliefs can work too. For instance, we can assign any beliefs aftere > e�

H
, and as long as�.e/ is sufficiently low for

e 2 Œ1; e�

H
/, the high ability type will not deviate. This means that for any e�

H
in the range there are multiple PBE that can work.

Since there are also infinitee�

H
that can work, we have a serious multiplicity problem. However, for any givene�

H
, the beliefs

induce the same probability distribution over the outcomes, so these PBE are essentially equivalent.
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the important substantive conclusion: in any of these equilibria the high type chooses an education level
that is (a) sufficiently high to prevent the low type from profiting by acquiring it, and (b) not so high as to
make it unprofitable for himself.

We can now employ some forward induction logic to eliminate all but one of these separating PBE.
Think about it this way: suppose in equilibriume�

H
> 1 but the high type deviates to1 � e < e�

H
. With

the off-the-path beliefs we assigned above, he will be punished when the employer infers that he is the
low-ability type. However, this deviation would not profit the low-ability type even if the employer were
to infer he has high ability. Therefore, the only type who canprofit from is the high ability type. But this
means, the employer should believe that�.e/ D 1. We shall see more of this logic in just a minute, for
now it suffices to say that our original system of beliefs appears unreasonable for such deviations. The
only reasonable system will be:

�.e/ D

(

0 if e < 1

1 if e � 1

With these beliefs, onlye�

H D 1 can be supported in equilibrium. Intuitively, the high-ability worker
would pick the lowest possible level of education that can separate him from the low-ability worker. The
low-ability worker cannot profit from choosing this level:UL.e�

H / D 2 � e�

H D 1 D UL.e�

L/, so he has
no incentive to deviate even if doing so would convince the employer that he’s the high ability type. We
therefore have a unique separating PBE withe�

H D 1 ande�

L D 0, with the beliefs specified above.
This refinement allows us to make a sharp prediction: the highability worker will pick the lowest

possible education level that will still deter the low-ability worker. Education will have instrumental value
because it will reveal to the employer the type of worker he isconsidering hiring.

Pooling Equilibria. In these PBE,eH D eL D e�, and Bayes’ rule gives�.e�/ D p because the
employer learns nothing. The wage offered then isw.e�/ D 1 C p. With this wage, theL worker’s type
payoff isUL.e�/ D 1 C p � e� and theH worker’s type payoff isUH .e�/ D 1 C p � e�=2. Observe
now that the worst that can happen to a worker is for the employer to conclude that he is the low-ability
type, in which case the wage would bew.e/ D 1. In equilibrium, even the low-ability type should be able
to do at least as well by choosing some education as by gettingno education at all and facing (possibly)
the worst-case scenario. That is,UL.e�/ � 1, which impliese� � p. In other words, only sufficiently
low levels of education can be supported in a pooling equilibrium. Any level above that will make the
low-ability worker prefer to get the low wage without investing in education.

Observe that this level is lower than the one required to sustain separation:e� < 1 � e�

H . Why was it
necessary to deter the low-ability type from deviations allthe way up toe D 1 in the separating case but
only up top in the pooling case? In other words, in the separating casee 2 .p; 1/ could potentially be
profitable so it was necessary to make sure that the high-ability type did not pick that level. The reason is
the wage being offered: in the pooling equilibrium the wage isw.e�

L
/ D 1 < w.e�/ D 1 C p < w.e�

H
/ D

2. That is, because the employer is uncertain which type he’s considering, so he will offer less than what
he would have offered to a worker who is known to be of high ability. On the other hand, the wage has to
be higher than what he would offer a worker of known low ability or else it would be impossible to get the
high-ability worker to invest in any education at all.

At any rate, anye� � p can be sustained in a pooling equilibrium. The system of beliefs that can do
that must (a) prevent the low-ability type from investing inno education—mimicking the high-ability type
must be profitable, and (b) prevent the high-ability type from investing in more education. Of course, now
everye ¤ e� is off the path, and as a zero-probability event does not allow us to use Bayes rule to derive
the posterior beliefs. However, the following system can support the pooling equilibrium:

�.e/ D

(

p if e D e�

0 if e ¤ e�:
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This is a very simple system (on and off the path): if the employer observes any unexpected level of
education, he decides that the worker is the low-ability type. Any deviation frome� will then cause him
to offer w.e/ D 1 < w.e�/ D 1 C p. Clearly, these beliefs will prevent any deviation toe > e� for either
type. We also know thate� � p ensures that the low-ability worker would not want to stay uneducated.
It is easy to see that this means that the high-ability workerwould not want to say uneducated either:
UL.e�/ � UL.0/ ) UH .e�/ > UH .0/. To see that, observe thatUL.e�/ � UL.0/ ) e� � p. This now
meansUH .e�/ D 1 C p � e�=2 � 1 C p � p=2 D 1 C p=2 > 1 D UH .0/. In other words, no type will
want to deviate. Therefore, anye� � p can be supported in a pooling equilibrium with these beliefs.8

By a logic analogous to the one above, there is no reason to expect workers to invest in any education
if doing so would reveal nothing about their abilities. Thisargument would eliminate all pooling PBE
except the one withe� D 0 where no worker invests anything in education and the employer offers a
wage is higher than the minimum but less than the maximum. Howmuch higher depends on his prior
belief that the worker is of high ability: the stronger this belief, the higher the wage he will offer. Note
that uncertainty here hurts the high-ability worker (who gets a salary lower than what the employer would
have offered if he knew his type) and benefits the low-abilityone (who gets a salary higher than what the
employer would have offered if he knew his type). This will generally be the case in these signaling games.

Semi-separating Equilibria. I leave these to you as an exercise.
Observe now that the model seems to be making two completely opposite predictions about the instru-

mental value of education. If we predict the separating PBE,the our conclusion would be that education
is a very useful signaling device. If, on the other hand, we predict the pooling PBE, then we conclude that
education is completely useless as a signaling device. So which is it?

It would be nice if we could eliminate one of the equilibrium types. The obvious candidate for that are
the pooling PBE because in them the employer’s beliefs are suspect: to prevent the high-ability worker
from attempting to reveal his type by choosing a higher levelof education, the employer threatens that
whenever he sees very high education levels, he will infer that the worker is the low-ability type. This
inference seems implausible.

Let me make this a bit more intuitive. Supposee� is a high-school diploma, ande D 3=2 is a Master’s
Degree. The employer’s belief essentially says, “I expect to see resumes where high-school diploma is
the educational level and will believe that the candidate isof high ability with probabilityp; if I see a
master’s degree, I will conclude that the candidate is of lowability for sure.” This seems incredible: since
acquiring education is costly, the only type who could potentially profit by getting more is the high-ability
type. The employer is “threatening with incredible beliefs” in much the same way players could threaten
with incredible actions off the equilibrium path. What beliefs would be more reasonable?

Suppose thatp D 1=5 and you are the employer and you get a resume with a Master’s degree and a
cover letter that states:

I know that you now think I have low ability because I acquireda Master’s degree. However,
suppose you believed that I am the high-ability type instead. You would offer me the high
wagew D 2. If I am really the high-ability type, my payoff will be2 � .3=2/.1=2/ D 5=4.
If, on the other hand, I am the low-ability type, my payoff would be2 � 3=2 D 1=2. If I had
invested in a high-school diploma only, you would have offered me the wagew D 1Cp D 6=5.
Observe now that I can potentially profit from a Master’s degree only if I really am the high-
ability type because5=4 > 6=5 > 1=2. In other words, if I were the low-ability type, then I
would not profit from getting a Master’s degree even if doing so were to convince you that I
was the high-ability type. I would never acquire a Master’s degree if I am the low-ability type.

8Again, there are other beliefs that can work here but they allinduce the same probability distribution over the outcomesto
all resulting PBE are essentially equivalent.
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Therefore, I could only have acquired it because I am the high-ability worker. Therefore, my
Master’s degree is a credible signal that I am the high-ability worker. Therefore, you should
update to believe that I am the high-ability worker. (Which means you should offer me the
high wage.)

In fact, for anyp < 1, we can always finde 2 Œ1; 2� which the high-type would prefer to choose
if doing so would convince the employer that he is the high type but that the low-type would not pick.
This argument (known as the Intuitive Criterion) would eliminate the pooling equilibria. We say that the
pooling PBE areunintuitive, and therefore should not be considered as substantive predictors of play. This
leaves the separating PBE. Of course, we already saw that a similar forward induction logic eliminates all
but one of these as well. We are then left with a very sharp prediction: education is useful and high-ability
workers will acquire the minimum level that is sufficient to deter the low-ability types from getting it.

There are two substantive insights you should take away fromthe result. First, the only way for a high
ability worker to get the high-paying job he deserves is to signal his type by investing in costly education.
Otherwise, the employer will treat him as a low-ability worker. This corresponds quite well to the empirical
observation that workers with more years of schooling on theaverage tend to earn higher wages.

Second, the value of education as a signaling device dependsnot on the skills that workers receive
through it, but on the costs they have to pay to acquire it. Thecritical insight here is that for education to
be useful as a signalling device, it is sufficient that education is costlier for the low ability type to acquire.
It does not matter if education really has any value added as long as it is less costly for the high-ability
type.

Finally, this result may be normatively troubling for it suggests that low-ability workers will be doomed
to lower wages and education is the institution that enforces this inequality. If it is true that there is
no intrinsic value-added to education, then universities are simply perpetuating the wealth inequalities
associated with abilities. Now, you may think that it’s ok that high-ability workers always earn more than
low-ability ones. I, on the other hand, prefer to think that the University can educate a previously low-
ability person and turn him/her into a high-ability worker that a firm can hire at a higher wage. Whatever
you believe, it is obvious that we should both support strictstandards for University education: if standards
lapse, even low-ability types will be able to acquire it, andthis will force high-ability types to aim even
higher to get employers to offer better wages. We have, in fact, seen this already. With the decline of
high-school education, more and more employers started to require bachelor’s degrees before they would
offer better salaries. As more students without adequate background flooded universities, many of them
reacted by watering down the requirements so they can keep graduation rates up. The predictable result
is that now you need to go for a Master’s degree because a Bachelor’s is no longer informative of quality.
But obtaining a Master’s degree is very expensive and it may not really improve your skills much beyond
what a good Bachelor’s degree can. It seems it will be in our common interest to strengthen the University
requirements. Now this is how you can stretch a formal model way beyond its capacity! But hey, don’t let
anyone tell you that we are not interested in policy recommendations!

3 Computing Perfect Bayesian Equilibria

We now look at several examples of how we can characterize PBEin extensive form games.

3.1 The Yildiz Game

Consider the game in Fig. 7 (p. 23) from notes by Muhamet Yildiz. Backward induction on player 1’s
actions at his two penultimate information sets1:3 and1:4 tells us that in any PBE he must be choosing
e andh respectively. Furthermore, at1:2 he must be choosingd because doing so would yield a strictly
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higher payoff (of 0) no matter what player 2 does. This is veryconvenient for it ensures that player 2’s
information set will always be reached with positive probability in any equilibrium, so we do not have to
worry about off-the-path beliefs. We conclude that in any PBE, player 1’s strategy must specify playingd

at1:2, e at1:3, andh at 1:4, each with probability 1.

.1

.9

N 2

a

4; 4

b

L

5; 2

R

e

3; 3

f
1; �5

c

�1; 4

d

L

0; 2

R

g

�1; 3

h
0; �5

1.1

1.2

1.3

1.4x

1�x

Figure 7: The Yildiz Game.

Let x denote player 2’s posterior belief that she is at the lower node in her information set. Suppose that
player 1 also choosesa with certainty. In this case, Bayes rule would pin down player 2’s belief tox D 1,
in which case she would certainly chooseL. But if she choosesL at her information set, then player 1
could do strictly better by choosingb instead ofa at his information set1:1, and therefore it cannot be the
case that in PBE he would choosea with certainty.

Suppose now that player 1 choseb with certainty at1:1. In this case, Bayes rule pins down player 2’s
belief tox D :1=.:1 C :9/ D :1 (intuitively, she can learn nothing new for player 1’s action). Given player
1’s sequentially rational strategy at his last informationsets, the expected payoff from choosingL then is
.:1/.2/ C .:9/.2/ D 2, and the expected payoff from choosingR then is.:1/.�5/ C .:9/.3/ D 2:2. Hence,
the only sequentially rational strategy for player 2 would be to chooseR with certainty. However, if she
choosesR for sure, then player 1 can do better by playinga at the information set1:1 because this would
give him a payoff of4, which is strictly better than the payoff of3 he would get from playingb for sure.
Therefore, it cannot be the case that in PBE he would chooseb with certainty.

We conclude that in equilibrium player 1 must be mixing at information set1:1. Let p denote the
probability with which he choosesb, and letq denote the probability with which player 2 choosesR.
Because player 1 is willing to mix, it follows that the expected payoff from choosinga must be the same
as the expected payoff from choosingb, or 4 D q.3/ C .1 � q/.5/, which givesq D :5. That is, because
player 1 is mixing in equilibrium, it must be the case that player 2 is mixing as well.

But for player 2 to be willing to mix, it must be the case that she is indifferent between choosingL and
R at her information set. That is, the expected payoff fromL must equal the expected payoff fromR, or
x.2/ C .1 � x/.2/ D x.�5/ C .1 � x/.3/, which givesx D 1=8. Only if her posterior belief is exactly1/8
would she be willing to mix.

From Bayes rule,x D .:1/.1/=Œ.:1/.1/ C .:9/p�, and hence player 1 must choosep such thatx D 1=8.
Solving the equation yields the correct value forp D 7=9, and so this must be the equilibrium mixing
probability for player 1 at1:1. We conclude that the game has a unique perfect Bayesian equilibrium in
the following strategies:
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� Player 1 choosesb with probability 7=9 at1:1, and chooses with certaintyd at1:2, e at1:3, andh at
1:4;

� Player 2 choosesR with probability 1=2.

Player 2’s beliefs at her information set are updated according to Bayes rule tox D 1=8. The strategies
are sequentially rational given the beliefs and beliefs areconsistent with the strategies. Hence, we have a
PBE.

3.2 The Myerson-Rosenthal Game

This makes the previous example a bit more complicated. In the Yildiz Game, player 1 is the informed
party (knows the outcome of the chance move by Nature) and player 2 is the one who has incomplete
information. Player 2 will attempt to infer information from player 1’s actions and because the players
have somewhat conflicting interests, player 1 obfuscates the inference by playing a mixed strategy (which
prevents player 2 from learning with certainty what he knows). Since the informed player moves first, this
is an instance of a signaling game. The game in this section reverses this: the first mover is the uninformed
player now and he must take an action that would induce the other player to reveal some information. Since
the preferences are again somewhat conflicting, player 2 will have incentives to obfuscate this inferences
in her turn, making the screening process harder for player 1.

1/20

19/20

N 1 1
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4; 4
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8; 8

1�y

y

2.1 2.2

Figure 8: The Myerson-Rosenthal Game.

The game is depicted in Fig. 8 (p. 24). The interpretation is as follows. Players take turns being
generous or selfish until someone is selfish or both have been generous twice. Each player loses $1 by
being generous, but gains $5 each time the other player is generous. (So actionss, S , s0, andS 0 are selfish,
but g, G, andg0, andG0 are generous.) The catch is that player 1 is unsure whether player 2 is capable of
being selfish: he estimates that with probability19=20 she can be selfish but with (small) probability1=20

she is the virtuous kind whose integrity compels her to be generous regardless of player 1’s behavior. That
is, she always chooses to be generous whenever she has to move. Of course, player 2 knows her own type.

At his first information set, player 1 believes that player 2 is virtuous with probability1=20. Lety denote
his (posterior) belief that she is virtues after they have taken two generous actions. Observe now that at
her last information set2:2, the selfish player 2’s only sequentially rational choice isS 0, which means that
in any PBE she will always be selfish there. We now have to find the rest of the strategies and beliefs.
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Suppose player 1 choseg0 with certainty in equilibrium. The only way this would be sequentially
rational is if the expected payoff froms0 did not exceed the expected payoff fromg0 given 2’s sequentially
rational strategy, or if4 � 8y C 3.1 � y/, which requiresy � 1=5. Because 1 is choosingg0 for sure,
player 2’s expected payoff from choosingG at 2:1 is 9, which is strictly better than getting5 by playing
S , and so she would certainly chooseG. Given that she would chooseG, player 1’s expected payoff from
choosingg at his first information set would be.1=20/.8/ C .19=20/.3/ D 3:25, which is strictly greater
than 0, which is what he would get by playings. Therefore, he would chooseg for sure. But this means
that player 1’s second information set is now along the path of play, and Bayes rule gives

y D
.1=20/.1/

.1=20/.1/ C .19=20/.1/
D 1=20 < 1=5;

which contradicts the necessary condition that makes playing g0 with certainty sequentially rational.
Therefore, there cannot be a PBE where player 1 choosesg0 with certainty.

Suppose player 1 choses0 with certainty in equilibrium. The only way this could be sequentially rational
is (by reversing the inequality in the previous paragraph) if y � 1=5. Because 1 is playings0 for sure, player
2 would certainly chooseS at 2:1 because the expected payoff is strictly greater. Given her sequentially
rational strategy, choosingg would yield player 1 the expected payoff of4.1=20/ C .�1/.19=20/ D �3=4.
Hence, the sequentially rational choice at this information set iss. This leaves player 1’s second informa-
tion set off the path of play, so Bayes rule cannot pin down thebeliefs there. In this case, we are free to
assign any beliefs, and in particular we can assign somey � 1=5. We have therefore found a continuum of
PBE in this game:

� Player 1 choosess ands0 with certainty at the respective information sets; if he ever finds himself at
his second information set, his belief isy � 1=5;

� Player 2 choosesS at2:1 andS 0 at 2:2.

We have a continuum of PBE because there is an infinite number of beliefs that satisfy the requirement.
However, all these PBE are equivalent in a very important sense: they predict the same equilibrium path
of play, and they only differ in beliefs following zero-probability events.

This may be a bit disconcerting in the sense that this equilibrium seems to require unreasonable beliefs
by player 1. Here’s why. Suppose there is an extremely small probability � > 0 that player 1 makes a
mistake at his first information set and playsg instead ofs. Then, using Bayes rule his posterior belief
would have to be:

y D
.1=20/�

.1=20/� C .19=20/��2.G/
D 1

because the only way to get to player 1’s second information set would be from the lower node at his first
information set (recall that player 2 choosesS , and so�2.G/ D 0). Note that this is true regardless of how
small � we take. Buty D 1 contradicts the requirement thaty � 1=5. In other words, it does not seem
reasonable for player 1 to hold such beliefs because even theslightest error would requirey D 1.

The PBE solution concept is too weak to pick out this problem.The stronger solution concept ofsequen-
tial equilibrium will eliminate all of the above PBE that require these unreasonable beliefs. Intuitively,
sequential equilibrium simply formalizes the argument from the previous paragraph. Instead of requiring
that beliefs are consistent along the equilibrium path only, it requires that they arefully consistent: that
is, that they are consistent for slightly perturbed behavior strategies that reach all information sets with
positive probability (and so Bayes rule would pin beliefs down everywhere). A belief vector� is fully
consistent with a strategy� if, and only if, there exist behavior strategy profiles that are arbitrarily close
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to � and that visit all information sets with positive probability, such that the beliefs vectors that satisfy
Bayes rule for these profiles are arbitrarily close to� .

Sequential equilibria are therefore a subset of the perfectBayesian equilibria and, more importantly,
always exist. Unfortunately, they can be quite difficult to compute because checking full consistency
requires finding the limits of systems of beliefs in sequences of games in which the perturbed behavior
strategies converge to the strategies under consideration. We will not cover sequential equilibria in this
class. However, let’s see how the idea of full consistency would eliminate the PBE we just found. The
posterior beliefy is given by:

y D
.1=20/�1.g/

.1=20/�1.g/ C .19=20/�1.g/�2.G/
D

1

1 C 19�2.G/
;

where the latter inequality would have to hold even when�1.g/ D 0 because it would hold for any slightly
perturbed behavior strategies with�1.g/ > 0. Returning to our solution, the requirement thaty � 1=5 then
translates into:

1

1 C 19�2.G/
�

1

5
, �2.G/ �

4

19
:

However, as we have seen, player 2’s only sequentially rational strategy is to playS with certainty, and
so �2.G/ D 0, which contradicts this requirement. Hence, no beliefsy � 1=5 are fully consistent, and
therefore none of these PBE are sequential equilibria.

Finally, we turn to the possibility that player 1 mixes at hissecond information set in equilibrium.
Since he is willing to randomize, he must be indifferent between his two actions, or in other words,
8y C 3.1 � y/ D 4 which yieldsy D 1=5. As we have seen already,

y D
1

1 C 19�2.G/
D

1

5
, �2.G/ D

4

19
:

This is the full consistency requirement that must also holdin PBE for any�1.g/ > 0. If player 2 is
willing to randomize, she must be indifferent between her two actions:5 D 4�1.s0/C9.1��1.s0//, which
implies that�1.s0/ D 4=5. Turning now to player 1’s move at his first information set, choosingg would
yield an expected payoff of

.19=20/
h

.�1/.1 � �2.G// C .4�1.s0/ C 3.1 � �1.s0///�2.G/
i

C .1=20/
h

4�1.s0/ C 8.1 � �1.s0//
i

D .19=20/
h

.�1/.15=19/ C .4.4=5/ C 3.1=5//.4=19/
i

C .1=20/
h

4.4=5/ C 8.1=5/
i

D 1=4:

Because this expected payoff is strictly greater than 0, which is what player 1 would get if he choses,
sequential rationality requires that he choosesg with certainty. We conclude that the following strategies
and beliefs constitute a perfect Bayesian (and the unique sequential) equilibrium withy D 1=5:

� Player 1 choosesg with probability 1, ands0 with probability 4/5;

� Player 2 choosesG with probability 4/19, andS 0 with probability 1.

Substantively, this solution tells us that player 1 must begin the game by being generous. Small amounts
of doubt can have significant impacts on how rational playersbehave. If player 1 were sure about 2’s
capacity for being selfish, then perpetual selfishness wouldbe the only equilibrium outcome. If, however,
it is common knowledge that player 2 may be generous by disposition, the result is different. Even when
player 1 attaches a very small probability to this event, he must be generous at least once because this
would encourage 2 to reciprocate even if she can be selfish. The selfish player 2 would reciprocate with
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higher probability because she wants player 1 to update his beliefs to an even higher probability that she is
virtuous, which would induce him to be generous the second time around, at which point she would defect
and reap her highest payoff of 9. Notice how in this PBE player1’s posterior belief went from1=20 up
to y D 1=5. Of course, the selfish player 2 would not want to try to manipulate player 1’s beliefs unless
there was an initial small amount of uncertainty that would cause player 1 to doubt her capacity for being
selfish.

3.3 One-Period Sequential Bargaining

There are two players, a sellerS and a buyerB. The buyer has a pot of money worthv, but the seller
does not know its exact amount. He believes that it isv D $20 with probability � , andv D $10 with
probability1 � � . The seller sets the pricep � 0 for a product that the buyer wants to get at the cheapest
price possible. After observing the price,B either buys, yielding the payoff vector.p; v � p/, or does not,
yielding .0; 0/. The game is shown in Fig. 9 (p. 27).

1 � ��

N

S

N

0; 0

Y

p; 20 � p

B

✄
✄
✄
✄
✄

N

0; 0

Y

p; 10 � p

B

❈
❈
❈
❈
❈

Figure 9: The One-Period Bargaining Game.

PlayerB would accept anyp � 20 at her left information set (that is, if she received $20) andwould
accept anyp � 10 at her right information set (that is, if she received $10). In other words,B buys iff
v � p. This means that ifS sets the price atp D $10, then he is sure to sell the product and get a payoff
of 10. If he sets the price at10 < p � 20, thenB would only buy if she had $20, in which case the seller’s
expected payoff is�p. Finally, the seller’s payoff for anyp > 20 is zero becauseB would never buy.

Consequently, the seller would never ask for more than $20 orless than $10 in equilibrium. What is he
going to ask for then? The choice is between offering $10 (which is the maximum a poorB would accept)
and something the richB would accept. Because anyp > 10 will be rejected by the poorB, the seller
would not ask for less than $20, which is the maximum that the rich B would accept. Hence, the seller’s
choice is really between offering $10 and $20. When would he offer $20?

The expected payoff from this offer is20� , and the expected payoff from $10 is 10 (because it is always
accepted). Therefore, the seller would ask for $20 whenever20� � 10, or � � 1=2. In other words, ifS
is sufficiently optimistic about the amount of money the buyer has, he will set the price at the ceiling. If,
on the other hand, he is pessimistic about the prospect, he would set the price at its lowest. The seller is
indifferent at� D 1=2.
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3.4 A Three-Player Game

Let’s try the game with three players shown in Fig. 10 (p. 28).This is a slightly modified version of a game
in notes by David Myatt.

DU

1

R

3; 3; 0

L

2

b

6; 1; 1

a

4; 4; 4

x

b

2; 2; 2

a

5; 5; 0

1�x3

Figure 10: The Three Player Game.

Player 3’s expected payoff from choosinga is 4x C 0.1 � x/ D 4x, and his expected payoff from
choosingb is x C 2.1 � x/ D 2 � x. The sequentially rational best response is:

�3.a/ D

8

ˆ

<

ˆ

:

1 if x > 2=5

0 if x < 2=5

Œ0; 1� otherwise:

Suppose then thatx > 2=5, and so player 3 is sure to choosea at his information set. In this case, player
2 would strictly prefer to chooseL, and given this strategy, player 1’s optimal choice isD. Given these
strategies, Bayes rule pins downx D 0, which contradicts the requirement thatx > 2=5. Hence, there is
no such PBE.

Suppose now thatx < 2=5, and so player 3 is sure to chooseb at his information set. In this case, player
2 strictly prefers to chooseR. Given her strategy, player 1’s best response would beU . In this case, Bayes
rule pins downx D 1, which contradicts the requirement thatx < 2=5. Hence, there is no such PBE.

We conclude that in PBE,x D 2=5, and so player 3 would be willing to mix. Player 2’s expected payoff
from L would then be5�3.a/ C 2.1 � �3.a// D 3�3.a/ C 2, and her payoff fromR is 3. Hence, her best
response would be:

�2.L/ D

8

ˆ

<

ˆ

:

1 if �3.a/ > 1=3

0 if �3.a/ < 1=3

Œ0; 1� otherwise:

Suppose then that�3.a/ > 1=3, and so she would chooseL for sure. In this case, player 1’s expected
payoff fromU is 4�3.a/ C 6.1 � �3.a// D 6 � 2�3.a/. His expected payoff fromD would be5�3.a/ C

2.1 � �3.a// D 2 C 3�3.a/. He would therefore chooseU if �3.a/ < 4=5, would chooseD otherwise,
and would be indifferent when�3.a/ D 4=5. However if he choosesD for sure, then Bayes rule pins down
x D 0, which contradictsx D 2=5. Similarly, if he choosesU for sure, Bayes rule pins downx D 1,
which is also a contradiction. Therefore, he must be mixing,which implies that�3.a/ D 4=5 > 1=3, and so
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player 2’s strategy is sequentially rational. What is the mixing probability? It must be such thatx D 2=5,
which implies that�1.U / D 2=5. We conclude that the following strategies and beliefs constitute a perfect
Bayesian equilibrium:

� Player 1 choosesU with probability 2/5

� Player 2 choosesL with probability 1

� Player 3 choosesa with probability 4/5, and updates to believex D 2=5.

Suppose now that�3.a/ < 1=3, and so player 2 would chooseR for sure. In this case, player 1’s
expected payoff fromD is 3, which means that he would chooseU if 6 � 2�3.a/ > 3. But since�3.a/

can at most equal 1, this condition is always satisfied, and therefore player 1 would always chooseU . In
this case, Bayes rule pins downx D 1, which contradicts the requirement thatx D 2=5. Hence, there can
be no such PBE.

Finally, suppose that�3.a/ D 1=3, and so player 2 is indifferent between her two actions. Player 1’s
expected payoff fromD in this case would be:

3.1 � �2.L// C �2.L/
h

5.1=3/ C 2.2=3/
i

D 3:

As we have seen already, in this case he would strictly preferto chooseU . But in this case, Bayes rule pins
downx D 1, which contradicts the requirement thatx D 2=5. Hence, no such PBE exists. We conclude
that the PBE identified in the preceding paragraph is the unique solution to this game.

3.5 Rationalist Explanation for War

Two players bargain over the division of territory represented by the intervalŒ0; 1�. Think of 0 as player
1’s capital and 1 as player 2’s capital. Each player prefers to get a larger share of territory measured in
terms of distance from his capital. Assume that players are risk-neutral, and so the utilities of a division
x 2 Œ0; 1� areu1.x/ D x andu2.x/ D 1 � x, respectively.

The structure of the game is as follows. Nature draws the the war costs of player 2,c2, from a uniform
distribution over the intervalŒ0; 1�. Player 2 observes her costs but player 1 does not. The war costs of
player 1,c1 2 Œ0; 1�, are common knowledge. Player 1 makes a demandx 2 Œ0; 1�, which player 2 can
either accept or reject by going to war. If she goes to war, player 1 will prevail with probabilityp 2 .0; 1/.
The player who wins the war, gets his most preferred outcome.

We begin by calculating the expected utility of war for both players:

U1.War/ D pu1.1/ C .1 � p/u1.0/ � c1 D p � c1

U2.War/ D pu2.1/ C .1 � p/u2.0/ � c2 D 1 � p � c2:

Before we find the PBE of this game, let’s see what would happenunder complete information. Player 1
will never offer anything less than what he expects to get with fighting, and hence any offer that he would
agree to must bex � p � c1. Similarly, player 2 will never accept anything less than what she expects to
get with fighting, and hence any offer that she would agree to must be1 � x � 1 � p � c2, or x � p C c2.
Hence, the set of offers thatbothprefer to war isŒp � c1; p C c2�. Because costs of war are non-negative,
this interval always exists. In other words,there always exists a negotiated settlement that both players
strictly prefer to going to war. With complete information, war will never occur in equilibrium in this
model.

What happens with asymmetric information? Since player 2 knows her cost when the offer is made, we
can figure out what offers she will accept and what offers she will reject. Accepting an offerx yields her
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a payoff of1 � x, while rejecting it yields her a payoff of1 � p � c2. She will therefore accept an offer if,
and only if,1 � x � 1 � p � c2, or, in terms of the costs, if

c2 � x � p:

Player 1 does not know whatc2 is, but knows the distribution from which it is drawn. From his perspective,
the choice boils down to making an offer and risk getting it rejected. Given player 2’s sequentially rational
strategy, from player 1’s perspective the probability thatan offer x is accepted is the probability that
c2 � x � p, or, given the uniform assumption,

Pr.c2 � x � p/ D 1 � Pr.c2 < x � p/ D 1 � x C p:

Hence, if player 1 makes an offerx, it will be accepted with probability1� x C p, in which case he would
obtain a payoff ofx, and it will be rejected with probability1 � 1 C x � p D x � p, in which case he
would obtain an expected payoff ofp � c1. The expected utility from offeringx is therefore:

U1.x/ D .1 � x C p/.x/ C .x � p/.p � c1/:

Player 1 will choosex that maximizes his expected utility:

@U1.x/

@x
D 1 � 2x C 2p � c1 D 0 , x� D

1 C 2p � c1

2
:

The perfect Bayesian equilibrium is as follows:

� Player 1 offers minfmaxf0; x�g; 1g.

� Player 2 accepts all offersx � c2 � p, and rejects all others.

In the PBE, theex anterisk of war isx� �p D 1�c1

2
> 0 as long asc1 < 1. In other words, the risk of war

is always strictly positive. This contrasts the complete information case where the equilibrium probability
of war is zero. Hence, this model provides an explanation of how rational players can end up in a costly
war. This is the well-knownrisk-return trade off: player 1 balances the risk of having an offer rejected
against the benefits of offering to keep for himself slightlymore. This result persists in models with richer
bargaining protocols, where pre-play communication is allowed, and even where players can intermittently
fight.

3.6 The Perjury Trap Game

This one is from notes by Jean-Pierre Langlois. All similarities to any people, living or dead, or any events,
in Washington D.C. or elsewhere, are purely coincidental. Aprosecutor, whom we shall call (randomly)
Ken, is investigating a high-ranking government official, whom we shall call (just as randomly) Bill. A
young woman, Monica, has worked for Bill and is suspected of lying earlier to protect him. Ken is
considering indicting Monica but he is really after the bigger fish: he has reason to believe that Monica
holds some evidence concerning Bill and is hoping to get her to cooperate fully by offering her immunity.
The problem is that he cannot be sure that she will, in fact, cooperate once granted immunity and even if
she does cooperate, the evidence she has may be trivial. However, since her testimony will force Bill to
take a public stand, Ken hopes to trap him into perjury or at least into admitting his guilt. Monica is most
afraid of being discredited and, all else equal, would rather not lie. She really wants to be vindicated if
she tells the truth or else to see Bill admit to all the facts. Bill, of course, wants to avoid getting trapped or
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Figure 11: The Langlois Perjury Game.

admitting to any transgressions. Assuming that both Ken andBill estimate that there’s a50 W 50 chance of
Monica’s evidence being hard, Fig. 11 (p. 31) shows one possible specification of this game.

We begin by finding the sequentially rational strategies forthe players. Bill will deny whenever the
expected payoff from denying,UB.D/, exceeds his expected payoff from admitting,UB.A/. Let x denote
Bill’s belief that the evidence is hard when he takes the stand. Then,

UB.D/ D x.1/ C .1 � x/.6/ D 6 � 5x

UB.A/ D x.3/ C .1 � x/.2/ D 2 C x;

so he will deny whenever6 � 5x > 2 C x ) x < 2=3. That is, Bill will deny if he believes that the
evidence is hard with probability less than2=3; otherwise, he will admit guilt. He is, of course, indifferent
if x D 2=3, so he can randomize.

Turning now to Monica. Although she knows the quality of the evidence she has, she is not sure what
Bill will do if she tells the truth. Letp denote the probability that Bill will deny if he is called to testify.
If the evidence is hard, Monica will therefore expect to get5p C 7.1 � p/ if she tells the truth and 3 if
she lies. Observe that her payoff from telling the truth is atleast 5, and as such is always strictly better
than her payoff from lying. That is, telling the truth strictly dominates lying here. This means that in any
equilibrium Monica will always tell the truth if the evidence is hard.

What if the evidence is soft? Lying gives her a payoff of 2, whereas telling the truth gives her an expected
payoff of1p C 8.1 � p/ D 8 � 7p. Therefore, she will tell the truth if8 � 7p > 2 ) p < 6=7. That is, if
Monica knows the evidence is soft, she will tell the truth if she expects Bill to deny it with probability less
than 6=7; otherwise she will lie. (Ifp D 6=7, she is, of course, indifferent and can randomize.)

We can now inspect the various candidate equilibrium profiles by type:

� Pooling Equilibrium. Since Monica always tells the truth when the evidence is hard, the only
possible pooling equilibrium is when she also tells the truth if the evidence is soft. Suppose that in

31



equilibrium Monica tells the truth when the evidence is soft. To make this sequentially rational, it
has to be the case thatp � 6=7. If Ken offers immunity, he will expect her to tell the truth no matter
what, so his expected payoff from doing so is:

UK.I / D .1=2/ Œ8p C 6.1 � p/� C .1=2/ Œ1p C 7.1 � p/� D .1=2/.13 � 4p/:

If he decides not to offer immunity, then his expected payoffis UK.N / D .1=2/.4/ C .1=2/.5/ D

.1=2/.9/. Hence, he will offer immunity wheneverUK.I / � UK.N /, or when13 � 4p � 9 )

p � 1. That is, no matter what Bill does, Ken will always offer immunity. If that’s the case, Bill
cannot update his beliefs: Ken offers immunity and Monica tells the truth regardless of the quality
of evidence. Therefore,x D 1=2, which implies that Bill will, in fact, deny for sure (recallthat he
does so for anyx < 2=3). Hence,p D 1, which contradicts the requirementp � 6=7, which is
necessary to get Monica to tell the truth when the evidence issoft. This is a contradiction, so such
an equilibrium cannot exist.

� Separating Equilibrium. Since Monica always tells the truth when the evidence is hard, the only
such equilibrium involves her lying when it is soft. Supposethat in equilibrium Monica lies when
the evidence is soft. To make this sequentially rational, ithas to be the case thatp � 6=7. If Ken
offers immunity, he expects a payoff of:

UK.I / D .1=2/ Œ8p C 6.1 � p/� C .1=2/.3/ D .1=2/.9 C 2p/:

We already know that his expected payoff from not making an offer is .1=2/.9/, so he will prefer
to offer immunity whenever9 C 2p � 9 ) p � 0. That is, no matter what Bill does, Ken will
always offer immunity. This now enables Bill to infer the quality of the evidence with certainty:
since Ken offers immunity no matter what but Monica only tells the truth if the evidence is hard, if
Bill ever finds himself on the witness stand, he will know thatthe evidence must be hard for sure;
that isx D 1. In this case, his sequentially rational response is to admit guilt (recall that he does
so wheneverp > 2=3), which meansp D 0. But this contradicts the requirement thatp � 6=7,
which is necessary to get Monica to lie when the evidence is soft. This is a contradiction, so such an
equilibrium cannot exist.

� Semi-separating Equilibrium. Since Monica always tells the truth when the evidence is hard, the
only such equilibrium involves her mixing when the evidenceis soft. Suppose that in equilibrium
Monica mixes when the evidence is soft. To make this sequentially rational, it has to be the case that
p D 6=7, which means that Bill must be mixing as well, which impliesx D 2=3. Let q denote the
probability that Monica tells the truth when the evidence issoft. If Ken offers immunity, he expects
a payoff of:

UK.I / D .1=2/ Œ8p C 6.1 � p/� C .1=2/ Œq.1p C 7.1 � p// C .1 � q/.3/�

D .1=2/ Œ9 C 2p C 2q.2 � 3p/� :

As before, his expected payoff from making no offer is.1=2/.9/, which means that he will prefer to
offer immunity whenever9 C 2p C 2q.2 � 3p/ � 9 ) p C q.2 � 3p/ � 0. Usingp D 6=7, this
reduces toq � 3=2. In other words, he will offer immunity no matter what probability q Monica
uses. This now pins down Bill’s posterior belief by Bayes’ rule:

x D
.1=2/.1/.1/

.1=2/.1/.1/ C .1=2/.1/q
D

1

1 C q
:

Because Bill is willing to mix, we know thatx D 2=3. Substituting this in the equation above and
solving forq yields: q D 1=2. This is the unique PBE.
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Therefore the following strategies constitute the unique perfect Bayesian equilibrium of the Perjury
Game:

� Ken always offers immunity;

� Monica tells the truth if the evidence is hard, and tells the truth with probability 1=2 if the evidence
is soft;

� Bill denies with probability6=7, believes that the evidence is hard with probability2=3.

The gamble is worth Ken’s while: the probability of catchingBill in the perjury trap equals the likelihood
of Monica having hard evidence,1=2, times the likelihood that Bill denies the allegations,6=7, for an overall
probability of 3=7, or approximately 43%. Bill is going to have a hard time in this game.
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